K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt AB=x, BC=y

Theo đề, ta có:

x+y=14 và x^2+y^2=100

=>x=8; y=6

=>S=8*6=48cm2

Xét ΔADC vuông tại D có 

\(AC^2=AD^2+DC^2\)

hay AC=40(cm)

Gọi R là độ dài bán kính của đường tròn ngoại tiếp ΔADC vuông tại D

\(\Leftrightarrow R=\dfrac{AC}{2}=20\left(cm\right)\)

24 tháng 8 2017

bạn gửi cho mình câu trả lời dc ko? cảm ơn

30 tháng 11 2019

1 tháng 5 2018

B A D C O M E

a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCD là hình vuông

+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:

=> \(AB^2=OA^2+OB^2=2R^2\)

Khi đó diện tích tứ giác ABCD:

\(S=AB^2=2R^2\)

b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)

Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC

Theo Pytago thuận ta có:

\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)

\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)

c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC

Tương tự, ta có OAE=OEA

=> OEA=MCA

=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

NV
30 tháng 7 2021

Gọi D, E, F lần lượt là tiếp điểm của (O) với BC, AC, AB

\(\Rightarrow OD\perp BC\) ; \(OE\perp AC\) ; \(OF\perp AB\)

Và \(OD=OE=OF=R\)

Ta có:

\(S_{ABC}=S_{OAB}+S_{OAC}+S_{OBC}\)

\(=\dfrac{1}{2}OF.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OD.BC\)

\(=\dfrac{1}{2}R.AB+\dfrac{1}{2}R.AC+\dfrac{1}{2}R.BC\)

\(=\dfrac{1}{2}R.\left(AB+AC+BC\right)\)

\(\Rightarrow45=\dfrac{1}{2}R.30\)

\(\Rightarrow R=3\left(cm\right)\)

NV
30 tháng 7 2021

undefined