K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

trong mặt phẳng (SAC) : SO ∩ CI = K là trọng tâm tam giác SAC

Trong mặt phẳng (SBD): BK ∩ SD = J là trung điểm SD ⇒ IJ // AD ⇒ IJ // BC.

∆SAB = ∆SCD (c.c.c) ⇒ trung tuyến BI = CJ ⇒ thiết diện CBIJ là hình thang cân.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án D

6 tháng 7 2017

Kẻ đường cao IE, JF

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

25 tháng 8 2019

Chu vi CBIJ = BC + IJ + 2BI

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

13 tháng 3 2018

4 tháng 1 2019

28 tháng 12 2020

a/ \(\left\{{}\begin{matrix}S=\left(SAB\right)\cap\left(SCD\right)\\Sx//AB//CD\end{matrix}\right.\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\)

b/ \(\left(MCD\right)\cap\left(ABCD\right)=CD\)

\(\left(MCD\right)\cap\left(SBC\right)=MC\)

\(\left(MCD\right)\cap\left(SCD\right)=CD\)

\(\left(MCD\right)\cap\left(SAB\right)=My\left(My//AB//CD\right)\)

\(\Rightarrow TD:CDM\)

Vậy thiết diện là hình tam giác.

P/s: Chắc bạn sẽ thắc mắc tại sao lại ko xét trường hợp (MCD) cắt (SAD). Bởi vì chúng ko có giao tuyến :)

23 tháng 4 2017

22 tháng 3 2018