Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hàm số \(y=ax^4+bx^2+c\)
Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)
\(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)
Đồ thị hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)
Với điều kiện (*) thì đồ thị có 3 điểm cực trị là :
\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)
Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.
Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)
Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)
b) Ta có yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=2\pm2\sqrt{2}\)
\(y'=4x^3-4x=0\Rightarrow\left\{{}\begin{matrix}x=0\Rightarrow y=2\\x=1\Rightarrow y=1\\x=-1\Rightarrow y=1\end{matrix}\right.\)
\(S=\dfrac{1}{2}.\left(2-1\right)\left(1-\left(-1\right)\right)=1\)
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm
Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)
Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)
Phương trình tiếp tuyến là : \(y-2=0\left(x-1\right)\) hay y = 2
b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)
Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)
c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)
Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)
d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)
\(\Leftrightarrow x_0=0;x_0=3\)
* \(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)
* \(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)
Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)
e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)
\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)
Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)
Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)
Phương trình đường thẳng AB : \(2x+y-4=0\)
Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)
\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)
\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)
* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)
* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)
Phương trình hoành độ giao điểm
x3+2mx2+3(m-1)x+2 =-x+2 hay x(x2+2mx+3(m-1))=0
suy ra x=0 hoặc x2+2mx+3(m-1)=0 (1)
Đường thẳng d cắt (C) tại ba điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 0
⇔ m 2 - 3 m + 3 > 0 m - 1 ≠ 0 ⇔ ∀ m m ≠ 1 ⇔ m ≠ 1
Khi đó ta có: C( x1 ; -x1+2) ; B(x2 ; -x2+2) trong đó x1 ; x2 là nghiệm của (1) ; nên theo Viet thì x 1 + x 2 = - 2 m x 1 x 2 = 3 m - 3
Vậy
C B → = ( x 2 - x 1 ; - x 2 + x 1 ) ⇒ C B = 2 ( x 2 - x 1 ) 2 = 8 ( m 2 - 3 m + 3 )
d ( M ; ( d ) ) = - 3 - 1 + 2 2 = 2
Diện tích tam giác MBC bằng khi và chỉ khi
Chọn B.
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
\(y'=3x^2-6mx=0\Rightarrow3x\left(x-2m\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\) (\(m\ne0\))
\(\Rightarrow\left[{}\begin{matrix}A\left(0;4m^2-2\right)\\B\left(2m;-4m^3+4m^2-2\right)\end{matrix}\right.\)
Bạn nên biết công thức này: công thức diện tích tam giác khi biết tọa độ 3 điểm:
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
Áp nó vào bài toán:
\(\left|2m.\left(6-4m^2\right)-1.\left(-4m^3+4m^2-2\right)\right|=8\)
\(\Leftrightarrow...\)