Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d1)//(d) => (d1):y=x+b (\(b\ne1\))
Xét pt hoành độ gđ của (d1) và (P):
\(\dfrac{1}{2}x^2=x+b\)
\(\Leftrightarrow x^2-2x-2b=0\) (1)
Để (d1) và (P) tiếp xúc với nhau <=>Pt (1) có nghiệm kép <=> \(\Delta=0\)\(\Leftrightarrow4-4\left(-2b\right)=0\Leftrightarrow b=-\dfrac{1}{2}\) (thỏa)
Vậy (d1): \(y=x-\dfrac{1}{2}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-2x+k-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\left(k-1\right)=-4k+4+4=-4k+8\)
Để (P) tiếp xúc với (d) thì -4k+8=0
hay k=2
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
a)( x= 0 ; y = 1); (y=0; x= 1/2) đt1
(x=0;y = -1) ; (y=0;x= 1) đt2
b) giao điểm tức là cùng nghiệm
-2x+1 = x- 1 => x = 2/3 ; y = -1/3
A(2/3; -1/3)
c) anh xem đk // là làm dc, em mệt r
`a)O(0;0), A(2;-2), B(-2;-2) in (P)`
`b)` Gọi `(d_1): y=ax+b`
Vì `(d_1) //// (d)=>a=2` và `b ne 1`
Thay `a=1`, ptr hoành độ của `(P)` và `(d_1)` là:
`-1/2x^2=x+b`
`<=>x^2+2x+2b=0` `(1)`
`(P)` tiếp xúc với `(d_1)<=>` Ptr `(1)` có nghiệm kép
`=>\Delta'=0`
`<=>1-2b=0`
`<=>b=1/2` (t/m)
`=>` Ptr `(d_1): y=x+1/2`