\(a^2+b^2\le a^4+b^4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

áp dụng bất đẳng thức buinhia

\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)

\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)

4 tháng 5 2018

Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)

Tương tự : \(b^2+\frac{1}{4}\ge b\)\(c^2+\frac{1}{4}\ge c\)

Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

30 tháng 9 2019

Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\) 

=3-(  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A

ta có bdt  \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).

=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)

dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)

12 tháng 6 2020

Ta chứng minh:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Khi đó:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\le16\)

\(\Rightarrow\left(a+b\right)^2\le16\Rightarrow-4\le a+b\le4\Rightarrowđpcm\)

21 tháng 10 2016

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((