K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Ta có:   \(\hept{\begin{cases}x^2+a_1x+b_1=0\left(1\right)\\x^2+a_2x+b_2=0\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{cases}}\) 
\(\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\ge0\)
\(\Rightarrow a_1a_2-2\left(b_1+b_2\right)\ge0\)
\(\Delta_1+\Delta_2\ge0\) 

nên có ít nhất 1 trong 2 cái \(\Delta\) không âm .
\(\Rightarrow\)Có ít nhất 1 trong hai phương trình có nghiệm .

14 tháng 8 2016

Ta có denta 1 + denta 2 = a1 -4b+ a22  - 4b>= 2aa- 4(b+ 4b2) >= 4(b1 + 4b2) - 4(b+ 4b2) = 0

Vậy có ít nhất 1 trong 2 denta >= 0 nên có ít nhất 1 phương trình có nghiệm

5 tháng 1 2019

Có: \(\Delta=a^2b^2-4a-4b\)

Để pt có 2 nghiệm thì \(\Delta\ge0\)

                      \(\Leftrightarrow a^2b^2\ge4a+4b\)

Theo Vi-et: \(\hept{\begin{cases}x_1+x_2=ab\\x_1x_2=a+b\end{cases}}\)

Ta có: \(x_1^2+x_2^2\ge2\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge2ab\)

\(\Leftrightarrow a^2b^2-2a-2b\ge2ab\)

\(\Leftrightarrow a^2b^2\ge2a+2b+2ab\)

Hmmm

7 tháng 7 2018

3700 hoặc 3699

7 tháng 7 2018

đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.

@nguyenthanhtuan cái này là chứng minh mà bạn.

24 tháng 3 2017

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )

17 tháng 4 2020

a) thay m=-1 vào x2(2m-1)x-m=0 ta có:

x2+(-3)x+1=0\(\Delta\)=5

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\)

b) A=\(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)

Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=-m\end{cases}}\)

=> \(A=\left(1-2m\right)^2-3\left(-m\right)=4m^2-4m+1+3m=4m^2-m+1\)