Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x^2+a_1x+b_1=0\left(1\right)\\x^2+a_2x+b_2=0\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{cases}}\)
\(\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\ge0\)
\(\Rightarrow a_1a_2-2\left(b_1+b_2\right)\ge0\)
Vì \(\Delta_1+\Delta_2\ge0\)
nên có ít nhất 1 trong 2 cái \(\Delta\) không âm .
\(\Rightarrow\)Có ít nhất 1 trong hai phương trình có nghiệm .
Ta có denta 1 + denta 2 = a12 -4b1 + a22 - 4b2 >= 2a1 a2 - 4(b1 + 4b2) >= 4(b1 + 4b2) - 4(b1 + 4b2) = 0
Vậy có ít nhất 1 trong 2 denta >= 0 nên có ít nhất 1 phương trình có nghiệm
Có: \(\Delta=a^2b^2-4a-4b\)
Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow a^2b^2\ge4a+4b\)
Theo Vi-et: \(\hept{\begin{cases}x_1+x_2=ab\\x_1x_2=a+b\end{cases}}\)
Ta có: \(x_1^2+x_2^2\ge2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge2ab\)
\(\Leftrightarrow a^2b^2-2a-2b\ge2ab\)
\(\Leftrightarrow a^2b^2\ge2a+2b+2ab\)
Hmmm
đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.
@nguyenthanhtuan cái này là chứng minh mà bạn.
\(ax^2+bx+c=0\)
Do phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)
\(\Rightarrow b,c\) trái đấu
Xét \(cx^2+bx+a=0\)
Giả sử phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )
Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt
\(\Rightarrow\) đpcm
Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )
Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )
Từ ( 1 ) và ( 2 )
Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )
a) thay m=-1 vào x2(2m-1)x-m=0 ta có:
x2+(-3)x+1=0\(\Delta\)=5
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\)
b) A=\(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=-m\end{cases}}\)
=> \(A=\left(1-2m\right)^2-3\left(-m\right)=4m^2-4m+1+3m=4m^2-m+1\)