Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
*Bạn tự vẽ hình nhé!
Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:
BC2 = AB2 + AC2
hay BC2 = 202 + 152
=> BC2 = 625 = 252
=> BC = 25 (cm)
Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:
AB2 = AH2 + HB2
=> BH2 = AB2 - AH2
=> BH2 = 202 - 122
=> BH2 = 256 = 162
=> BH = 16 (cm)
Mà H thuộc BC nên H nằm giữa BC
=> BH + HC = BC
=> 16 + HC = 25
=> HC = 25 - 16
=> HC = 9 (cm)
Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
*Tự vẽ hình
- Xét tam giác AHC vuông tại H có :
AH2+HC2=AC2 (Đ/lí Py-ta-go)
=>122+HC2=202
=>144+HC2=400
=> HC2=256
=>HC=16cm
- Có : BC=BH+CH
=> 21=BH+16
=> BH=5cm
Vậy:.......