K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

Thay \(x=-4\) vào pt elip ta được:

\(\frac{y^2}{9}=1-\frac{16}{25}=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}y=\frac{9}{5}\\y=-\frac{9}{5}\end{matrix}\right.\)

\(\Rightarrow MN=2.\frac{9}{5}=\frac{18}{5}\)

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

9 tháng 4 2017

a, Phương trình chính tắc của (E) có dạng

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a

Ta có A(0;2) \(\in\left(E\right)\)<=>b=2

(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)

Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3

==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)

c, S=4ab=24

25 tháng 4 2019

bạn có thể trình bày chi tiết bài làm giúp mình không ?

3 tháng 11 2019

Đáp án C

31 tháng 1 2017

Đáp án: C

4 x 2  + 9 y 2  = 36

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Elip có a 2  = 9 ⇒ a = 3, b 2  = 4 ⇒ b = 2

Hình chữ nhật cơ sở có hai cạnh là 2a = 6, 2b = 4. Do đó, diện tích hình chữ nhật cơ sở là: 6.4 = 24

NV
25 tháng 4 2019

Do trục lớn gấp đôi trục bé \(\Rightarrow2a=2\left(2b\right)\Rightarrow a=2b\Rightarrow a^2=4b^2\)

Phương trình elip có dạng:

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\Leftrightarrow\frac{x^2}{4b^2}+\frac{y^2}{b^2}=1\)

Do \(A\left(2;-2\right)\in\left(E\right)\Rightarrow\frac{2^2}{4b^2}+\frac{\left(-2\right)^2}{b^2}=1\)

\(\Leftrightarrow\frac{1}{b^2}+\frac{4}{b^2}=1\Rightarrow\frac{5}{b^2}=1\Rightarrow b^2=5\Rightarrow a^2=4.5=20\)

Phương trình elip: \(\frac{x^2}{20}+\frac{y^2}{5}=1\)