Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bạn nào muốn mình giải toán 9 giùm thì hãy kết bạn mình trên face mình sẽ chụp bài qua cho
b, ^ACD = ^DAH ( vì góc tạo bởi tiếp AH và dây cung AD và góc nt chắn cung AD )
c, Xét tam giác AHD và tam giác CHA ta có
^H _ chung
^HAD = ^HCA (cmt)
Vậy tam giác AHD ~ tam giác CHA (g.g)
=> AH/HC = HD/AH => AH^2 = HD.HC
Tóm tắt thôi nhé
a) Các cạnh // => Hình bình hành
T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi
b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //
c) 1] OO' là đường trung trực của AB => đường trung bình
2] CB//OO'
Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng
a) Cm: OD là phân giác góc BOC
Nối C và B
Xét tam giác ABC có:
* C thuộc (O)
* AB là đường kính của (O)
=> tam giác ABC nội tiếp đường tròn tâm O, đường kính AB
=> tam giác ABC vuông tại C
=> AC vuông góc BC
Ta có: AC // OD (gt)
Mà AC vuông góc BC (cmt)
=> OD vuông góc BC
Xét tam giác OCB có:
* OC = OB (=R)
=> tam giác OCB cân tại O
Mà có OD là đường cao (OD vuông góc BC cmt)
=> OD cũng là phân giác góc BOC (tính chất)
b) Cm: CD là tiếp tuyến của đường tròn
Xét tam giác COD và tam giác BOD có:
* OC = OB (=R)
* góc COD = góc BOD (cmt ở câu a)
* OD là cạnh chung
=> tam giác COD = tam giác BOD (c-g-c)
=> góc OBD = góc OCD (góc tương ứng)
Mà góc OBD = 90 độ (BD là tiếp tuyến)
=> góc OCD = 90 độ
=> CD vuông góc OC
=> CD là tiếp tuyến đường tròn tâm O