Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(\overrightarrow{MA}=(a-3;-1); \overrightarrow{MB}=(-3;b-1)\)
Để tam giác MAB vuông tại M thì: \(\overrightarrow{MA}\perp \overrightarrow{MB}\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB}=0\)
\(\Leftrightarrow -3(a-3)+(-1)(b-1)=0\)
\(\Leftrightarrow 3a+b=10\)
\(2S_{MAB}=|\overrightarrow{MA}|.|\overrightarrow{MB}|=\sqrt{(a-3)^2+1}.\sqrt{9+(b-1)^2}\)
\(=\sqrt{[(a-3)^2+1][9+(10-3a-1)^2}]=3\sqrt{[(a-3)^2+1][1+(a-3)^2]}=3[(a-3)^2+1]\geq 3\)
Vậy diện tích MAB nhỏ nhất khi \(a-3=0\Leftrightarrow a=3\)
\(a=3\Rightarrow b=10-3a=1\)
Vậy...........
Tham khảo ở đây nhé!
Trong mặt phẳng tọa độ Oxy cho điểm M(3;1). Giả sử A(a;0) và B(0;b) ( với a, b là các số thực không âm) là 2 điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất. Tìm a và b
tóm lại đề bài bạn cần làm như sau
bạn tính vecto MA rồi tính vecto MB từ đó tính độ dài MA và MB
=>diện tích tam giác vuông MAB=1/2 MA.MB rồi lập luận thế thôi hết bài
lập luận không khó đâu good luck
Ta có: \(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow ab=a+b\ge2\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\ge2\Rightarrow ab\ge4\)
Tọa độ \(A\left(0;b\right)\) ; \(B\left(a;0\right)\)
\(S=\frac{1}{2}ab\ge\frac{1}{2}.4=2\)
Dấu "=" xảy ra khi \(a=b=2\Rightarrow T=10\)
\(\overrightarrow{AB}=\left(-a;b\right)\) ; \(\overrightarrow{MA}=\left(a-2;-1\right)\)
ABM thẳng hàng \(\Rightarrow b\left(a-2\right)=a\Rightarrow b=\frac{a}{a-2}\)
Do \(b>0\Rightarrow a>2\)
a/ \(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}ab=\frac{1}{2}.\frac{a^2}{a-2}=\frac{1}{2}\left(a-2+\frac{4}{a-2}+4\right)\ge\frac{1}{2}\left(2\sqrt{\frac{4\left(a-2\right)}{a-2}}+2\right)=3\)
Dấu "=" xảy ra khi \(\left(a-2\right)^2=4\Rightarrow a=4\Rightarrow b=2\)
\(\Rightarrow A\left(4;0\right);B\left(0;2\right)\)
b/ \(OA+OB=a+b=a+\frac{a}{a-2}=a+1+\frac{2}{a-2}\)
\(=a-2+\frac{2}{a-2}+3\ge2\sqrt{\frac{2\left(a-2\right)}{a-2}}+3=3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(a-2\right)^2=2\Leftrightarrow a=2+\sqrt{2}\Rightarrow b=1+\sqrt{2}\)
\(\Rightarrow A\left(2+\sqrt{2};0\right);B\left(0;1+\sqrt{2}\right)\)