K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

a gọi I là trung điểm của A=> I thuộc đường tròn (O) vì OI-1/2.)OA=1.2.2R=R= BK
có AB,AC là tiếp tuyến của (O)
=>góc ABO=góc ACO=90 độ
=> tam giác ABO vuông tại B, có BI là đường trung tuyến 
=> BI=OI=IA
có OI=OC=OB
=> tứ giác OBIC là hình thoi 
=> OI là đường phân giác của góc BIC(tính chất hình thoi) hay AI là phân giác góc BAC(1)
lại có ABOC nội tiếp(O) (cmt)
=> AO vuông góc với BC hay AI vuông góc với BC(2), AB=AC(3)
từ (1)(2)(3)=> tam giác ABC đều

24 tháng 11 2017

O A B C D E

a) Ta thấy ngay \(\widehat{BDA}=\widehat{CBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cung cùng chắn một cung)

Vậy nên \(\Delta ABC\sim\Delta ADB\left(g-g\right)\)

b) Do \(\Delta ABC\sim\Delta ADB\Rightarrow\frac{AB}{AD}=\frac{AC}{AB}\Rightarrow AB^2=AD.AC\)

Xét tam giác vuông OBA có \(AB=\sqrt{AO^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

Vậy nên \(AD.AC=AB^2=3R^2\)

c) Ta thấy rằng \(\Delta ABC\sim\Delta ADB\Rightarrow\widehat{ABC}=\widehat{ADB}\)

Vậy thì \(\widehat{BEA}=\widehat{DBE}+\widehat{BDE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABE}\)

Suy ra tam giác ABE cân tại A hay AB = AE.

Do A, B cố định nên AE không đổi.

Vậy khi cát tuyến ACD quay xung quanh A thì E di chuyển trên đường tròn tâm A, bán kính AB.

d)  Ta có AC.AD = 3R2 ; AC + AD = 7R/2

nên ta có phương trình \(AC\left(\frac{7R}{2}-AC\right)=3R^2\)

\(\Leftrightarrow AC^2-\frac{7R}{2}AC+3R^2=0\Leftrightarrow AC=2R\)

\(\Rightarrow AD=\frac{3R}{2}\)

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
20 tháng 12 2018

a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).

c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)

14 tháng 2 2020

A B C D E K I O H

14 tháng 2 2020

Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )

xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)

=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)

ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)

do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)

=> A,B,O,H,C thuoc duong tron duong kinh AO

=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)

ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau

=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)

=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)

=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)

Tu (1),(2),(3) ta co dpcm