Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\dfrac{2012a+b+c+d}{a}=\dfrac{a+2012b+c+d}{b}=\dfrac{a+b+2012c+d}{c}\)
\(=\dfrac{a+b+c+2012d}{d}\)
\(\Rightarrow\dfrac{2012a+b+c+d}{a}-2011=\dfrac{a+2012b+c+d}{b}-2011\)
\(=\dfrac{a+b+2012c+d}{c}-2011=\dfrac{a+b+c+2012d}{d}-2011\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\) ta có:
\(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
\(\Rightarrow M=\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(a+d\right)}{a+d}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}=-1\)
+) Xét \(a+b+c+d\ne0\)
\(\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
\(\Rightarrow M=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=1\)
Vậy nếu \(a+b+c+d=0\) thì M = -1
nếu \(a+b+c+d\ne0\) thì M = 1
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;
\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)
\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}\cdot4=2\)
Vậy \(A=2\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2(a+b+c+d)}=\frac{1}{2}\)
\(\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\Leftrightarrow a=b=c=d\)
Do đó:
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Vậy \(A=2\)
Ta có: \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
Vậy ....................
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\cdot2b\\b=\dfrac{1}{2}\cdot2c\\c=\dfrac{1}{2}\cdot2d\\d=\dfrac{1}{2}\cdot2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)
\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
ta có :\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
suy ra:\(a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
vậy giá trị của A là 2
ta có \(\dfrac{ }{ }\)\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{a}{2b}=\dfrac{1}{2}\)\(\Rightarrow\)a = b
tương tư b=c ;c = d
\(\Rightarrow\) a = b = c =d
A = \(\dfrac{2011a-2010a}{a+a}+\dfrac{2011b-2010b}{b+b}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011d-2010d}{d+d}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
với dạng toán này, khi nhìn vào bn thấy ở trên tử có a;b;c;d ở duoi mẫu có a;b;c;d là bn nghĩ ngay cách tính hệ số k mà trog tlt, bit k r thì cái j chẳng tính dc, mai thi xong mk cho đề
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d-a-2b-c-d}{a-b}=1\)
\(\Rightarrow\left\{\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)
\(\Rightarrow M=1+1+1+1\)
\(\Rightarrow M=4\)
Vậy \(M=4\)
ta có \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
=> \(\left(\dfrac{a}{b+c+d}+1\right)=\left(\dfrac{b}{a+c+d}+1\right)=\left(\dfrac{c}{a+b+d}+1\right)=\left(\dfrac{d}{a+b+c}+1\right)\)
(=) \(\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{a+b+c}\)
*Nếu a+b+c+d=0
=> \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)
=> M=(-1)+(-1)+(-1)+(-1)=(-4)
Nếu a+b+c+d\(\ne\)0
=> a=b=c=d
=> M=1+1+1+1=4
Xét a+b+c+d=0
\(\Rightarrow\)a=-(b+c+d).Thay vào \(\dfrac{a}{b+c+d}\)ta có
\(\dfrac{-\left(b+c+d\right)}{b+c+d}\)=-1.Làm tương tự như thế ta có
M=-1+(-1)+(-1)+(-1)=-4
Xét a+b+c+d\(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{b+c+a}\)
=\(\dfrac{a+b+c+d}{2\cdot\left(a+b+c+d\right)}\)=\(\dfrac{1}{2}\)
Vì\(\dfrac{a}{b+c+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2a=b+c+d
\(\Rightarrow\)3a=a+b+c+d\(\left(1\right)\)
Vì\(\dfrac{b}{a+c+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2b= a+c+d
\(\Rightarrow\)3b=a+b+c+d\(\left(2\right)\)
Vì\(\dfrac{c}{a+b+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2c=a+b+d
\(\Rightarrow\)3c=a+b+c+d\(\left(3\right)\)
Vì\(\dfrac{d}{b+c+a}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2d=b+c+a
\(\Rightarrow\)3d=a+b+c+d\(\left(4\right)\)
Từ\(\left(1\right)\),\(\left(2\right)\),\(\left(3\right)\),\(\left(4\right)\)
\(\Rightarrow\)3a=3b=3c=3d
\(\Rightarrow\)a=b=c=d.Khi đó
M=\(\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)
=1+1+1+1
=4
Vậy...
Mình trình bày hơi xấu các bạn thông cảm1!
có dãy tỉ số bằng nhau đó thì ta cộng vào rồi rút gọn thì được kết quả là \(\dfrac{2015}{2011}\) nó sẽ bằng với từng biểu thức đó.
Mẫu sẽ cố 2011=2011a; 2011=2011b; 2011=2011c; 2011=2011d
=> a = b = c = d = 1
=> M = 4