Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Từ giả thiết \(a+b+c=6\) ta có:
\(\left(a+b+c\right)^2=36=a^2+b^2+c^2+2\left(ab+ac+bc\right)=P+ab+ac+bc\)
Hay \(P=36-ab-bc-ca\).
Vậy GTLN của P tương đương với GTNN của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a\) là số lớn nhất trong \(a,b,c\)
Thì \(a+b+c=6\le3a\), do đó \(4\ge a\ge2\)
Lại có: \(ab+bc+ca\ge ab+ca=a\left(b+c\right)=6\left(6-a\right)\ge8\) với \(4 \ge a \ge 2\)
Do đó GTNN của \(ab+bc+ca=8\), khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
Vậy GTLN của P là \(36-8=28\) khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
\(\left\{\begin{matrix}a+b+c=6\left(1\right)\\0\le a,b,c\le4\left(2\right)\end{matrix}\right.\)
Từ(1)=> \(\left\{\begin{matrix}b+c=\left(6-a\right)\\b^2+c^2+bc=\left(6-a\right)^2-bc\end{matrix}\right.\)
\(P=a^2+\left(b^2+c^2+bc\right)+a\left(b+c\right)=a^2+\left[\left(6-a\right)^2-bc\right]+a\left(6-a\right)\)
\(P=\left(a^2-12a+36\right)-bc=\left(a-6\right)^2-bc\)
Từ (2)=> \(bc\ge0\) \(\Rightarrow P\le\left(a-6\right)^2\)
đạt được khi: \(b.c=0\Rightarrow\left[\begin{matrix}b=0\\c=0\end{matrix}\right.\) (3)
từ (1)&(3) \(\Rightarrow2\le a\le4\) (4)
P lớn nhất => !a-6! lớn nhất thủa mãn (4) => a=2 Từ (1)&(3)=>\(\left[\begin{matrix}b=4\\c=4\end{matrix}\right.\)
Kết luận:
Để P(a,b,c) đạt Max trong 3 số phải có 1 số =0 (cận bé của (2) ; Một số =4 (cận lớn của (2); một số thỏa mãn điều kiện (1)
Vậy: \(P_{max}\left(a,b,c\right)=P\left(4,2,0\right)=4^2+2^2+0^2+2.4+0+0=28\)
Giả sử $a\leq b\leq c\Rightarrow 2\leq c\leq 4$
$P=a^2+b^2+ab+c(a+b+c)=(a+b)^2-ab+6c\leq (6-c)^2+6c=c^2-6c+36=(c-3)^2+27$
Vì $2\leq c\leq 4$ nên $-1\leq c-3\leq 1\Rightarrow (c-3)^2\leq 1$
Vậy MaxP=28 khi a,b,c là hoán vị của 0,2,4
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
2)không.Vì hiệu của 2 số là 1 số lẻ nên số trừ phải là số lẻ hoặc chẵn nhưng trong trường hợp này số trừ lẻ thì số bị trừ chẵn mà SBT là SNT nên SBT=2( vô lý vì SBT luôn >2014)
còn nếu số trừ chẵn thì số trừ =2 SBT=2015( là hợp số)
1)C=3^210
C=3^200*3^10
D=2^310=
D=2^300*2^10
Mà 3^200=(3^2)^100=9^100
2^300=(2^3)^100=8^100
nên 3^200>2^300
Mà 3^10>2^10
Nên 3^200*3^10>2^300*2^10
C>D
3)Gọi số số hạng là n
ta có
A=1-5+9-13+17-21+25-...
A=1+4+4+4...=2013(có n/2-1 số 4)
A=1+4*(n/2-1)=2013
A=1+2*n-4=2013
1+2*n=2017
2*n=2016
n=1008
số cuối là 4029(tui làm lụi đó hông bít có đúng hk)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\cdot\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)
\(\cdot\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)
\(\cdot\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{4}\)
\(\Rightarrow\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{4}\left(=\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}\right)\)
\(\Rightarrow\)\(\Rightarrow\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
Vậy \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)