Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta lấy 6 - 2 = 4
12-6= 6
20-12=8
30-20=10
nhìn các số trên ta có thể thấy các số cộng với 2,,6,12,20,30,... đều là số chẵn là 2,4,6,8,0. nhưng lần này bạn sẽ thắc mắc vì sao lại bắt đầu cộng từ 4 mà không phải vì 2 là vì :
ta đã thấy số 2 đứng đầu là sỗ chẵn rồi nên sẽ cộng từ 4
vậy dãy số mà tôi đưa ra là :
2,6,12,20,30,32,36 , 42.
"còn những câu khac tôi không hiểu . xin lỗi vì không thể trả lời hết ".
Sau khi xem xét kỹ hơn, ta nhận thấy mẫu số của dãy phân số có thể được biểu diễn bằng công thức sau:
Mẫu số thứ n = n * (n + 1) * (n + 1) / 2
Áp dụng công thức này, ta có thể giải các câu hỏi:
**a) Tìm phân số thứ 20 của dãy số:**
Tử số của phân số thứ 20 là 20. Mẫu số của phân số thứ 20 là:
20 * (20 + 1) * (20 + 1) / 2 = 20 * 21 * 21 / 2 = 4410
Vậy phân số thứ 20 là 20/4410.
**b) Phân số 16/7708 có thuộc dãy số trên không?**
Nếu 16/7708 thuộc dãy số, thì 7708 phải là mẫu số của một phân số trong dãy. Ta cần tìm n sao cho:
n * (n + 1) * (n + 1) / 2 = 7708
n * (n + 1)² = 15416
Giải phương trình này (có thể dùng phương pháp thử hoặc công cụ giải phương trình), ta tìm được n ≈ 16.
Thử lại: 16 * (16 + 1)² / 2 = 16 * 289 / 2 = 2312 ≠ 7708
Vậy 16/7708 không thuộc dãy số.
**c) Tính tổng 10 phân số đầu tiên:**
Tổng 10 phân số đầu tiên có thể được tính bằng cách tính tổng của từng phân số:
∑ (n / [n(n+1)(n+1)/2]) với n từ 1 đến 10
Tuy nhiên, việc tính tổng này khá phức tạp. Không có công thức đơn giản để tính tổng này trực tiếp. Cần tính từng phân số và cộng lại.
**Kết luận:**
* **a) Phân số thứ 20 là 20/4410.**
* **b) 16/7708 không thuộc dãy số.**
* **c) Cần tính tổng từng phân số để tìm tổng 10 phân số đầu tiên (không có công thức rút gọn).**
a) 3 số hạng tiếp theo là: 42;56;72.
b) Ta có: 2=1 x 2
6=2 x 3
12=3 x 4
20=4 x 5
30= 5 x 6
Quy luật của dãy số: mỗi số hạng bằng số thứ tự của nó nhân với số liền sau .
Vậy số hạng thứ 30 của dãy là:
30 x 31=930
Đáp số: a) 42;56;72
b) 930.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
\(\frac{1}{2}=\frac{1}{1\times2}\), \(\frac{1}{6}=\frac{1}{2\times3}\), \(\frac{1}{12}=\frac{1}{3\times4}\), \(\frac{1}{20}=\frac{1}{4\times5}\),...
Số hạng thứ 10 của dãy số trên là: \(\frac{1}{10\times11}\).
Tổng của 10 số hạng đầu của dãy số trên là:
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{11-10}{10\times11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
a)Quy luật : \(\frac{1}{\left[\left(n-1\right)\cdot3+1\right]\left(3n+1\right)}\) ( n là vị trí của dãy phân số trên )
Phân số thứ 30 là : \(\frac{1}{\left[\left(30-1\right)\cdot3+1\right]\left(3\cdot30+1\right)}=\frac{1}{8008}\)
b) Ta có tổng sau : \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{88\cdot91}\)
\(3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{88\cdot91}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\)
\(3A=1-\frac{1}{91}=\frac{90}{91}\)
\(A=\frac{90}{91}\div3=\frac{30}{91}\)
Vậy tổng của 30 phân số đầu tiên trong dãy trên là \(\frac{30}{91}\)
làm đúng mà dis hoài
bực ơi là bực
ai dis hả khai mau tui dis lại ko chừa 1 phát nào