K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

AB=AC, mà trên AB lấy N sao cho AN= AC => N trùng vs B, tek thì ban đầu lấy N để làm j?

18 tháng 1 2016

Mik ghi lộn. Là AB > AC mới đúng.

 

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

29 tháng 12 2017

a)

Xét \(\Delta CIA;\Delta DIB\) có :

\(IC=ID\left(gt\right)\\ \widehat{CIA}=\widehat{DIB}\left(đ^2\right)\\ IA=IB\left(gt\right)\\ \Rightarrow\Delta CIA=\Delta DIB\left(c-g-c\right)\\ \)

b)

\(\Delta CIA=\Delta DIB\\ \Rightarrow\widehat{A}=\widehat{DBI}\)

=> BD // AC

30 tháng 12 2017

a) Xét ΔCIA và ΔDIB

Có: IA=IB (gt)

\(\widehat{CIA}=\widehat{DIB}\) (2 góc đối đỉnh)

IC=ID (gt)

⇒ ΔCIA và ΔDIB (c-g-c)

b) Do ΔCIA và ΔDIB (theo câu a)

\(\widehat{ACI}=\widehat{D}\) (2 góc tương ứng)

\(\widehat{ACI}=\widehat{D}\) ở vị trí so le trong

⇒ BD // AC

c) Gọi giao điểm giữa cạnh MN và canh BC là K

Xét ΔABC và ΔAMN

Có: AC =AN (gt)

\(\widehat{BAC}=\widehat{MAN}\left(=90^O\right)\)

AB=AM (gt)

⇒ ΔABC = ΔAMN (c-g-c)

\(\widehat{AMN}=\widehat{ABC}\) (2 góc tương ứng)

\(\widehat{ANM}=\widehat{KNB}\) (Vì 2 góc đối đỉnh)

Xét ΔAMN vuông tại A

nên: \(\widehat{KBN}+\widehat{ANM}=90^O\) (Tính chất của Δ vuông)

hay: \(\widehat{KBN}+\widehat{KNB}=90^O\)

Xét ΔKNB có:

\(\widehat{KNB}+\widehat{KBN}+\widehat{NKB}=180^O\) (Định lý tổng 3 góc của 1Δ)

hay: \(\widehat{NKB}=180^O-\left(\widehat{KNB}+\widehat{KBN}\right)\)

\(\widehat{NKB}=180^O-90^O\)

\(\widehat{NKB}=90^0\)

⇒ MN ⊥ CB (ĐPCM)

26 tháng 2 2020

A B E O C D M

a) Xét \(\Delta\)MDC và  \(\Delta\)MAB có: MC = MB (gt)  ; ^CMD = ^BMA ( đối đỉnh ) ; MD = MA

=> \(\Delta\)MDC = \(\Delta\)MAB  => AB = DC ; ^MBA = ^MCD mà hai góc này ở vị trí so le trong => AB // CD

b) ^MBA = ^MCD  mà ^MBA + ^MCA = 90o => ^MCD + ^MCA = 90o => ^ACD = 90o 

Xét \(\Delta\)ABC và \(\Delta\)CDA có:  AB = CD ( theo a) ; ^ACD = ^CAB ( =90o ) ; AC chung 

=> \(\Delta\)ABC = \(\Delta\)CDA => BC = AD  => AM =AD/2 =  BC/2

c) \(\Delta\)ABC = \(\Delta\)CDA => ^ACB = CAD (1)

Lại có: \(\Delta\)BCE  có: BA vuông CE; A là trung điểm EC => \(\Delta\)CBE cân => ^ACB = ^AEB  (2)

Từ (1); (2) => ^CAM = ^CEB  mà hai góc ở vị trí đồng vị => AM//EB

d) Để AC = BC/2 => AC = AM = CM =>\(\Delta\)AMC đều => ^ACB = ^ACM = 60o 

=> \(\Delta\)ABC vuông tại A có điều kiện ^C = 60o 

e) \(\Delta\)EBC cân tại B  ( đã chứng minh ở câu c) => BE = BC  mà BC = AD (đã chứng minh ở câu b)

=> BE = AD  

^DAO = ^^OBE ( so le trong ; AM // BE ) 

AO = OB ( O là trung điểm AB )

=> \(\Delta\)AOD = \(\Delta\)BOE => ^AOD = ^BOE mà ^AOD + ^DOB = ^AOB = 180 độ => ^DOB + ^BOE = 180 độ => ^DOE = 180 độ

=> D; O; E thẳng hàng.

11 tháng 1 2018

         Đi đâu mà vội mà vàng

Mà vấp phải đá mà quàng phải dây

5 tháng 12 2018

bn phải ra đề bài thì mọi người mới giúp đc bn chứ

26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath