Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)
nên AMHN là tứ giác nội tiếp
2: Ta có: \(\widehat{MNH}=\widehat{BAI}\)
\(\widehat{INH}=\widehat{MCB}\)
mà \(\widehat{BAI}=\widehat{MCB}\)
nên \(\widehat{MNH}=\widehat{INH}\)
hay NH là phân giác của góc MNI
Ta có: \(\widehat{NMH}=\widehat{CAI}\)
\(\widehat{IMH}=\widehat{NCB}\)
mà \(\widehat{CAI}=\widehat{NCB}\)
nên \(\widehat{NMH}=\widehat{IMH}\)
hay MH là tia phân giác của góc NMI
Xét ΔMNI có
MH là phân giác
NH là phân giác
Do đó: H là tâm đường tròn nội tiếp ΔMNI
=>H cách đều NM và MI
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a) Xét tứ giác BMNC :
Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)
\(\widehat{CNB}\)= 90 ( BN là đường cao)
M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC
=> Tứ giác BMNC là tứ giác nội tiếp
Xét tứ giác AMHN :
Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )
\(\widehat{HNA}\)= 90 ( BN là đường cao )
\(\widehat{HMA}+\widehat{HNA}\)=180
=> Tứ giác AMHN là tứ giác nội tiếp
nguyen thi vang_Nhã Doanh_Akai Haruma_Lightning Farron vô giúp đứa này coi....
Nguyễn Thanh Hằng giúp t bài này đi hằng...rồi t có thưởng cho m...nha Phúc =))
điên -_-