Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3x4 + 2x2 - 2x2 + 2x - 5 = 3x4 + 2x - 5
2) P(-1) = 3.(-1)4 + 2.(-1) - 5 = 3 - 2 - 5 = 0
P (3) = 3.34 + 2.3 - 5 = 243 + 6 - 5 = 244
\(p\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)
a, \(p\left(x\right)=2x^2+1\)( thu gọn và sắp xếp )
b, Đặt \(2x^2+1=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\)( vô lí )
Do \(x^2\ge0\forall x;-\frac{1}{2}< 0\)Vây đa thức ko có nghiệm ( đpcm )
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
a) \(3x^5-2x^2+x^4-\dfrac{1}{2}x-x^5+x^2-3x^4-1\)
\(=2x^5-x^2-2x^4-\dfrac{1}{2}x-1\)
\(=1-\dfrac{1}{2}x-x^2-2x^4+2x^5\)
Đa thức bậc 5, hệ số cao nhất là 2, hệ số tự do là -1.
b) \(2x^4-2x^2+4x^5+3x^2-x+x^2+1-x^4-2x^5\)
\(=x^4+2x^2+2x^5-x+1\)
\(=1-x+2x^2+x^4+2x^5\)
Đa thức bậc 5, hệ số cao nhất là 2, hệ số tự do là 1.
+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3
P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014
P(x) = x4 + 4x2 + 2014
Sắp xếp : P(x) = x4 + 4x2 + 2014
+) Ta có: x4 \(\ge\)0; 4x2 \(\ge\)0 ; 2014 > 0
=> x4 + 4x2 + 2014 > 0
=> P(x) vô nghiệm
\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)
\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)
\(=x^4+4x^2+2014\)
Sắp xếp P(x) = x4 + 4x2 + 2014
Ta có: \(x^4\ge0\forall x\)
\(x^4+4x^2\ge0\forall x\)
2014 > 0
=> P(x) vô nghiệm
Bạn ơi
Hai số 5 cùng nhau là gì vậy
Đó là công hay trừ Nhân hay chia.
Bạn nói thì mình mới làm được chứ
mik nhầm là 1 số 5