\(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)

\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)

\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)

\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)

\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{97\cdot99}-\dfrac{48}{97}\)

\(=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)

3 tháng 4 2017

Ta có \(A=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\)

\(\Leftrightarrow2A=\dfrac{2}{99\cdot97}-\dfrac{2}{97\cdot95}-...-\dfrac{2}{3\cdot1}\)

\(=-\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{95}-...-\dfrac{1}{3}+1\)

\(=-\dfrac{1}{99}+1=\dfrac{98}{99}\)

\(\Rightarrow A=\dfrac{49}{99}\)

3 tháng 4 2017

\(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)

\(=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)

Đặt \(B=\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\)

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{95.97}\)

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{95.97}\)

\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{95}-\dfrac{1}{97}\)

\(2B=1-\dfrac{1}{97}\)

\(2B=\dfrac{96}{97}\)

\(B=\dfrac{96}{97}:2=\dfrac{48}{97}\)

\(\Rightarrow A=\dfrac{1}{99.97}-B=\dfrac{1}{9603}-\dfrac{48}{97}=\dfrac{-4751}{9603}\)

22 tháng 3 2017

Cộng lại. Đó là điều phải chứng minh.hihi

22 tháng 3 2017

Bạn Nguyễn Lưu Vũ Quang ơi, nếu như vậy mình đâu cần hỏi nữa?

7 tháng 2 2023

`1/15+1/35+1/63+1/99+1/143`

`=1/[3.5]+1/[5.7]+1/[7.9]+1/[9.11]+1/[11.13]`

`=1/2(2/[3.5]+2/[5.7]+2/[7.9]+2/[9.11]+2/[11.13])`

`=1/2.(1/3-1/5+1/5-1/7+...+1/11-1/13)`

`=1/2.(1/3-1/13)`

`=1/2 . 10/39`

`=5/39`

11 tháng 2 2023

A= 1/3 + 1/3^2 + ... + 1/3^8

3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)

3A=1+ 1/3 + 1/3^2+ ... +1/3^7

=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)

=> 2A= 1 - 1/ 3^8

2A= 6560/6561

A= 6560/6561 : 2

A= 3280/6561

11 tháng 2 2023

nè bạn

 

19 tháng 7 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)

\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{10}\)

\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 7 2017

Các phần còn lại tương tự như a).

4 tháng 3 2023

\(\dfrac{-1}{4}< \dfrac{x}{24}< \dfrac{-1}{6}\\ \dfrac{-6}{24}< \dfrac{x}{24}< \dfrac{-4}{24}\\ \Rightarrow x=-5\)

4 tháng 3 2023

\(\dfrac{-1}{4}< \dfrac{x}{24}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-6}{24}< \dfrac{x}{24}< \dfrac{-4}{24}\)
\(\Rightarrow-6< x< -4\)
\(\Rightarrow x=-5\)

21 tháng 2 2023

MSC : `840`

`-5/8=-5.105/8.105=-525/840`

`7/10=7.84/10.84=588/840`

`-16/14=-16.60/14.60=-960/840`

`23/24=23.35/24.35=805/840`

`-1=-840/840`

Sắp xếp các phân số sau theo thứ tự giảm dần:

`805/840;588/840;-525/840;-840;-960/840`

21 tháng 2 2023

MSC : `24`

`-5/6=-5.4/6.4=-20/24`

`7/8=7.3/8.3=21/24`

`7/24=7/24`

`-3/4=-3.6/4.6=-18/24`

`2/3=2.8/3.8=16/24`

`1=24/24`

Sắp xếp các phân số sau theo thứ tự tăng dần : 

`-20/24;-18/24;7/24;16/24;21/24;24/24`

1. Giải thích tại sao các p/s sau đây bằng nhau: a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\) 2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho : \(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ? 3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên) 4.Cộng cả tử và...
Đọc tiếp

1. Giải thích tại sao các p/s sau đây bằng nhau:
a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)
2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho :
\(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ?
3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên)
4.Cộng cả tử và mẫu của \(\dfrac{23}{40}\)với cùng một STN n rồi rút gọn, ta được \(\dfrac{3}{4}\). Tìm số n
5.Tìm phân số có mẫu bằng 7, biết rằng khi cộng tử với 26, nhân mẫu với 5 thì giá trị của phân số đó không thay đổi
6.Cho S=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
7. Tính nhanh
M=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
8. Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
9. So sánh : A=\(\dfrac{10^8+2}{10^8-1}\); B=\(\dfrac{10^8}{10^8-3}\)

Giúp vs ~ leuleu

4
8 tháng 5 2017

1)

a)

\(\dfrac{-21}{28}=\dfrac{\left(-21\right):7}{28:7}=\dfrac{-3}{4}\\ \dfrac{-39}{52}=\dfrac{\left(-39\right):13}{52:13}=\dfrac{-3}{4}\)

\(\dfrac{-3}{4}=\dfrac{-3}{4}\) nên \(\dfrac{-21}{28}=\dfrac{-39}{52}\)

b)

\(\dfrac{-1717}{2323}=\dfrac{\left(-17\right)\cdot101}{23\cdot101}=\dfrac{-17}{23}\\ \dfrac{-171717}{232323}=\dfrac{\left(-17\right)\cdot10101}{23\cdot10101}=\dfrac{-17}{23}\)

\(\dfrac{-17}{23}=\dfrac{-17}{23}\) nên \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)

8 tháng 5 2017

2)

Theo tính chất cơ bản của phân số ta có: \(\dfrac{a}{b}=\dfrac{a\cdot m}{b\cdot m}\)\(m\ne n\)

nên không thể.

Trường hợp duy nhất là khi \(a=0\)

Khi đó: \(\dfrac{a}{b}=\dfrac{0}{b}=\dfrac{0\cdot m}{b\cdot n}=\dfrac{0}{b\cdot n}=0\)

3)

Gọi ƯCLN\(\left(12n+1,30n+2\right)\)\(d\)

Ta có:

\(12n+1⋮d\\ \Rightarrow5\cdot\left(12n+1\right)⋮d\left(1\right)\\ \Leftrightarrow60n+5⋮d\\ 30n+2⋮d\\ \Rightarrow2\cdot\left(30n+2\right)⋮d\\ \Leftrightarrow60n+4⋮d\left(2\right)\)

Từ (1) và (2) ta có:

\(\left(60n+5\right)-\left(60n+4\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d=1\)

Vậy ƯCLN\(\left(12n+1,30n+2\right)=1\)

Mà hai số có ƯCLN = 1 thì hai số đó nguyên tố cùng nhau và không có ước chung nào khác

\(\Rightarrow\dfrac{12n+1}{30n+2}\)tối giản