\(P=\left(a+b\right)\left(\dfrac{1}{a^3+b}+\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2022

\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{1}{a^3+b}\le\dfrac{\dfrac{1}{a}+b}{\left(a+b\right)^2}=\dfrac{ab+1}{a\left(a+b\right)^2}\)

Tương tự: \(\dfrac{1}{b^3+a}\le\dfrac{ab+1}{b\left(a+b\right)^2}\)

\(\Rightarrow P\le\left(a+b\right)\left(\dfrac{ab+1}{a\left(a+b\right)^2}+\dfrac{ab+1}{b\left(a+b\right)^2}\right)-\dfrac{1}{ab}\)

\(P\le\dfrac{\left(ab+1\right)}{a+b}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{ab}-\dfrac{1}{ab}=1\)

\(P_{max}=1\) khi \(a=b=1\)

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

4 tháng 5 2017

1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1), (2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)

Từ (1),(2) và (3) suy ra:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

mà x+y+z=3

=>\(x^2+y^2+z^2+3\ge2.3=6\)

<=> \(x^2+y^2+z^2\ge6-3=3\)

<=> \(A\ge3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1

b, Ta có: x+y+z=3

=> \(\left(x+y+z\right)^2=9\)

<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)

<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)

\(x^2+y^2+z^2\ge3\) (theo a)

=> \(9-2xy-2yz-2xz\ge3\)

<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)

<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)

<=> \(B\le3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

25 tháng 3 2018

\(A=\left(\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{6x+3}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\left(x+2\right)\)\(A=\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)\left(x+2\right)}\)

a) \(A=\left\{{}\begin{matrix}x\ne-1;-2\\\dfrac{1}{x^2-x+1}\end{matrix}\right.\)

b)

\(A>1;\dfrac{1}{x^2-x+1}>1\Leftrightarrow x^2-x< 0\Leftrightarrow0< x< 1\)

\(P=\dfrac{1}{x^2-x+1}.\dfrac{x^3-x^2+x}{\left(x+1\right)^2}=\dfrac{x}{\left(x+1\right)^2}\)

x>0 => P >0 đang tìm Giá trị LN => chỉ xét P>0 <=> x>0

\(\dfrac{1}{P}=\dfrac{\left(x+1\right)^2}{x}=x+2+\dfrac{1}{x}\)

áp co si hai số dương x ; 1/x

\(\dfrac{1}{P}\ge2.\sqrt{x.\dfrac{1}{x}}+2=4\Rightarrow P\le\dfrac{1}{4}\)

đẳng thức khi x =1/x => x=1 thỏa mãn đk của x

\(MaxP=\dfrac{1}{4}\)

10 tháng 7 2017

a) \(4\left(a+b\right)ab=3\left(a-b\right)^2+\left(a+b\right)^2\Leftrightarrow4\left(a+b\right)ab=4a^2+4b^2-4ab\Leftrightarrow\left(a+b\right)ab=a^2+b^2-ab\) (đúng)

=> đẳng thức được cm

b) nếu nghĩ ra thì tớ giải cho

10 tháng 7 2017

b) chịu!! T_T!!

25 tháng 9 2017

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0

<=> \(\left[{}\begin{matrix}a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\end{matrix}\right.\)

TH1: a + b + c = 0

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

TH2: a = b = c

A = 2.2.2 = 8