\(\sqrt{1+a^2}+\sqrt{1+b^2}+\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2019

\(\sqrt{a^2+1}=\sqrt{a^2+ab+ac+bc}=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+c\right)\left(a+b\right)}\)

Áp dụng BĐT Cauchy: \(\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{a+b+a+c}{2}=\dfrac{2a+b+c}{2}\)

\(\Rightarrow\sqrt{1+a^2}\le\dfrac{2a+b+c}{2}\)

Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\sqrt{1+b^2}\le\dfrac{2b+a+c}{2}\\\sqrt{1+c^2}\le\dfrac{2c+a+b}{2}\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

11 tháng 1 2019

cảm ơn bạn nhiều nhé

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

11 tháng 10 2019

a b c la : nhau vay a 2 b 5 c 9

11 tháng 10 2019

dap an laf a 4  b 6c 14

19 tháng 3 2019

Ta có : \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ac+c^2}=\sqrt{\left(b+a\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(c+b\right)}\)

\(\le\frac{a+c+b+c}{2}+\frac{a+b+b+c}{2}+\frac{a+c+a+b}{2}=2\left(a+b+c\right)\)

( áp dụng BĐT Cô - si cho các số a ; b ; c dương )

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab+bc+ac=1\\a+c=b+c=a+b\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy ...

31 tháng 3 2021

Đề phải là số thực không âm mới đúng

2 tháng 5 2017

Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)

\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)

\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)

2 tháng 5 2017

Đăng nhiều thế???

29 tháng 6 2017

Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)

\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)

\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)

\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)

29 tháng 6 2017

Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.