\(\ge\)8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

Ta có:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+abc\right)\left(b+abc\right)\left(c+abc\right)=abc\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)=\left(ab+1\right)\left(ac+1\right)\left(bc+1\right)\)Á dụng bất đẳng thức Cauchy \(x+y\ge2\sqrt{xy}\) ta có

\(ab+1\ge2\sqrt{ab.1}=2\sqrt{ab}\)

\(bc+1\ge2\sqrt{bc.1}=2\sqrt{bc}\)

\(ac+1\ge2\sqrt{ac.1}=2\sqrt{ac}\)

=> \(\left(ab+1\right)\left(ac+1\right)\left(bc+1\right)\ge2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}=8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\sqrt{1}=8\)

hay \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\left(đpcm\right)\)

11 tháng 5 2018

Đóng góp cách khác :))

Ta có:\(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Rightarrow a^2+2a+1-4a\ge0\)

\(\Rightarrow\left(a+1\right)^2\ge4a\)

TT\(\Rightarrow\left(b+1\right)^2\ge4b;\left(c+1\right)^2\ge4c\)

Nhân vế theo vế\(\Rightarrow\text{[}\left(a+1\right)\left(b+1\right)\left(c+1\right)\text{]}^2\ge64abc\)

\(\Rightarrow\text{[}\left(a+1\right)\left(b+1\right)\left(c+1\right)\text{]}^2\ge64\)

Mà a,b,c dương\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\left(\text{đ}pcm\right)\)

30 tháng 3 2018

Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)

\(\Rightarrow a-\dfrac{1}{a}\ge2\)

Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)

=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))

\(\ge2.2+3.2+9=19\)

Dấu = xảy ra khi x=y=1

AH
Akai Haruma
Giáo viên
9 tháng 12 2017

Lời giải:

Đặt biểu thức vế trái là A

Có \(a+\frac{1}{a+1}=\frac{a^2+a+1}{a+1}=\frac{a^2}{a+1}+1=\frac{a^2}{a+1}+\frac{1}{2}+\frac{1}{2}\)

Áp dụng BĐT Cauchy-Schwarz:
\(a+\frac{1}{a+1}\geq \frac{(a+1+1)^2}{a+1+2+2}=\frac{(a+2)^2}{a+5}\)

Thực hiện tương tự với các phân thức còn lại và nhân theo vế:

\(\Rightarrow A\geq \frac{(a+2)^2(b+2)^2(c+2)^2}{(a+5)(b+5)(c+5)}\)

Áp dụng BĐT AM-GM:

\((a+2)(b+2)(c+2)\geq 3\sqrt[3]{a}.3\sqrt[3]{b}.3\sqrt[3]{c}=27\sqrt[3]{abc}\geq 27\)

\(\Rightarrow A\geq \frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\) (1)

Ta sẽ cm

\(\frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\geq \frac{27}{8}(*)\Leftrightarrow 8(a+2)(b+2)(c+2)\geq (a+5)(b+5)(c+5)\)

\(\Leftrightarrow 8[abc+8+2(ab+bc+ac)+4(a+b+c)]\geq abc+125+5(ab+bc+ac)+25(a+b+c)\)

\(\Leftrightarrow 7abc+11(ab+bc+ac)+7(a+b+c)\geq 61\)

BĐT trên luôn đúng theo AM_GM:

\(7abc+11(ab+bc+ac)+7(a+b+c)\geq 7abc+33\sqrt[3]{a^2b^2c^2}+21\sqrt[3]{abc}\geq 7+33+21=61\)

Do đó (*) đúng.

Từ \((1);(2)\Rightarrow A\geq \frac{27}{8}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Y
1 tháng 5 2019

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

25 tháng 12 2017

Các bạn và thầy cô giúp mk đi

3 tháng 10 2019

dùng bất đẳng thức cosi vs 2 cái: vd:a/b^3+ab

hok tốt

17 tháng 3 2019

Ta có: abc = 1, thế vào ta được:

\(\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\)

\(=\frac{b^2c^2}{a^2bc\left(b+c\right)}+\frac{c^2a^2}{b^2ac\left(c+a\right)}+\frac{a^2b^2}{c^2ab\left(a+b\right)}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel, ta có:

\(VT\ge\frac{\left(bc+ca+ac\right)^2}{abc\left(2ab+2bc+2ca\right)}=\frac{\left(bc+ca+ac\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

22 tháng 12 2019

BĐT Cauchy-Schwarz dạng Engel là gì vậy bn?

Nhờ bn giải thích dùmhaha