Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
\(=\frac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)(Dãy tỉ số bằng nhau)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)\(=\frac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9;a_2-2=8;...;a_9-9=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_9=10\).
Ta có: \(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\) và a1+a2+...+a9=90
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)
Do đó, *)a1-1=9 => a1=10
*)a2-2=8 => a2=10
............................
*)a9-9=1 => a9=10
Vậy a1=a2=a3=a4=a5=a6=a7=a8=a9=10
Theo dãy tỉ số = ta có :
\(\frac{a_1-1}{9}=....=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+7+6+..+1}=\frac{\left(a_1+..+a_9\right)-\left(1+2+..+9\right)}{1+2+3+..+9}\)
\(=\frac{90-45}{45}=1\)
=> a1-1 = 1 => a1 = 2
=> a2 - 2 = 1 => a2 = 3
.......................
=> a9 - 9 = 1 => a9 = 10
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ÁP dụng TCDTSBN có:
\(\frac{a1-1}{89}=\frac{a2-2}{8}=....=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a9-9}{9+8+...+1}=\frac{\left(a1+a2+...+a9\right)+\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
=> \(\frac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=10\)
Vậy a1=a2=...=a9=10
a1 = a9 = 10