\(\dfrac{18}{x}\). ko vẽ đồ thị của chúng e hã...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Hoành độ giao điểm 2 đồ  thị là nghiệm của phương trình \(2x=\frac{18}{x}\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Với \(x=3\Rightarrow y=6\Rightarrow A\left(3;6\right)\)

Với \(x=-3\Rightarrow y=-6\Rightarrow B\left(-3;-6\right)\)

Vậy 2 giao điểm là \(A\left(3;6\right);B\left(-3;-6\right)\)

13 tháng 6 2019

Phương trình hoàn độ và giao điểm của hai đồ thị hàm số trên là:

\(2x=\frac{18}{x}\left(x\ne0\right)\Leftrightarrow2x^2-18=0\)

\(\Leftrightarrow2\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (T/M)

Với x = 3 thì y = 6 ta được A = (3;6)

Với x = -3 thì y = -6 ta được B = (-3;-6)

Vậy tọa độ giao điểm của hai đồ thị hàm số trên là A = (3;6) và B = (-3;-6)

13 tháng 6 2019

hoàn độ -> hoành độ giùm t. Đánh lanh tay quá chả để ý mà đăng luôn.:V

13 tháng 9 2015

Gọi A (xo; yo) là giao điểm của hai đồ thị

\(\in\) đồ thị hàm số y = 2x => y= 2xo

\(\in\) đồ thị hàm số y = 18/x => y= 18/xo

=> 2x= 18/xo => 2xo2 = 18 <=> x2o = 9 => x= 3 hoặc xo = - 3

+) x= 3 => y= 6 => A (3;6)

+) xo = -3 => yo = - 6 => A (-3; -6)

Vậy...

* Nhận xét: Để tìm tọa độ giao điểm của hai đồ thị hàm số

- Tìm hoành độ giao điểm :Giải  f(x) = g(x) => x = ....

- Thay x tìm được  vào hàm số y = f(x) hoặc y = g(x) => y =...

15 tháng 12 2016

Hoành độ của tọa độ Giao điểm của hai đồ thị chính là nghiệm của phương trình

\(2x=\frac{18}{x}\Leftrightarrow\frac{2x^2}{x}=\frac{18}{x}\Rightarrow\hept{\begin{cases}2x^2=18\\x\ne0\end{cases}}\)\(\Leftrightarrow x^2=\frac{18}{2}=9\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)(1)

thay x từ (1) vào một trong hai hai hàm số trên được y

\(thayvao....y=2x\Rightarrow\orbr{\begin{cases}x=-3\Rightarrow y=-6\\x=3\Rightarrow y=6\end{cases}}\)

Kết luân:

A(xa,ya)=(-3,-6)

B(xb,yb)=(3,6)