\(\frac{5}{n^2+1}\)

a,CMR B luôn là phân số

b, Tính B với n=5,-2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

a) n^2 >= 0

=> n^2 +1 > 0

=> mẫu khác 0

=> B là phân số.

b) Thay n = 5 vào B, ta đc :

B=\(\frac{5}{5^2+1}=\frac{5}{26}\)

Thay n= -2 vào B ta dc :

B =\(\frac{5}{\left(-2\right)^2+1}=\frac{5}{5}=1\)

Kết luận.....

c) Để B nguyên thì n^2 + 1 thuộc Ư ( 5 )

=> n^2 + 1 = { -1 ; -5 ; 1 ; 5 }

Ta có bảng :

n^2 + 1 -1 -5 1 5
n^2 -2 -6 0 4
n ko TM ko TM 0 ( TM ) 2 & -2 (TM)

Vậy giá trị của n là ....

d) thay B = \(\frac{1}{2}\) ; ta dc :

\(\frac{1}{2}\) = \(\frac{5}{n^2+1}\)

=> n^2 +1 = 2 . 5

=> n^2 +1 =10

=> n^2 =9

=> n = -3 hoặc n=3

kết luận....

đúng thì tích

27 tháng 5 2016

a, A=\(\frac{n+1}{n-2}\)=\(\frac{n-2+3}{n-2}\)=1+\(\frac{3}{n-2}\)

Để A nguyên khi n-2 là ước của 3

=> n-2\(\in\)\(\left\{1;-1;3;-3\right\}\)

=> n\(\in\)\(\left\{3;1;5;-1\right\}\)

b) A=1+\(\frac{3}{n-2}\) để A có giá trị lớn nhất khi n-2 có giá trị là số nguyên dương nhỏ nhất

=> n-2=1=> n=3

27 tháng 5 2016

a) Ta có:  \(A=\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{3}{n-2}+1\)  (1)

Vì 1 là 1 số nguyên => \(\frac{3}{n-2}\) cũng phải là số nguyên để A có giá trị nguyên

\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n-213-1-3
n351-1

=> n phải = { 3;5;1;-1} để A có giá trị nguyên

b) Từ vế (1) ở câu trên \(\Rightarrow A=1+\frac{3}{n-2}\)

Vì 1 là số nguyên => A lớn nhất khi \(\frac{3}{n-2}\) lớn nhất => n-2 phải bé nhất và được kết quả là số dương

=> n-2=1 là phù hợp

=> n=3

Vậy để A có giá trị lớn nhất thì n phải = 3

3 tháng 7 2017

a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :

\(12⋮n\)

\(\Leftrightarrow n\inƯ\left(12\right)\)

\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)

Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm

b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :

\(15⋮n-2\)

\(\Leftrightarrow x-2\inƯ\left(15\right)\)

Tới đây tự lập bảng zồi làm típ!

c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :

\(8⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(8\right)\)

Lập bảng rồi làm nhs!

31 tháng 7 2016

 1)

a. Để B là phân số thì:\(n-3\ne0\Leftrightarrow n\ne3\)

b. Có: \(B=\frac{n-8}{n-3}=\frac{n-3-5}{n-3}=1-\frac{5}{n-3}\)

Để B là số nguyên thì \(n-3\inƯ\left(5\right)\)

Mà: Ư(5)={1;-1;5;-5}

=> n-3={1;-1;5;-5}

Ta có bảng sau:

n-31-15-5
n428-2

 Vậy n={-2;2;4;8} thì B nguyên

 

 

7 tháng 2 2017

Theo đề bài ta có :

\(A=\frac{n+1}{n-1}=\frac{1}{2}\)

\(\Leftrightarrow2\left(n+1\right)=n-1\)

\(\Leftrightarrow2n+2=n-1\)

\(\Leftrightarrow2n-n=-1-2\)

\(\Rightarrow n=-3\)

Vậy với n = - 3 thì A = \(\frac{1}{2}\)

7 tháng 2 2017

ĐKXĐ: \(n\ne1\)

\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=1+\frac{2}{n-1}\)

\(A=\frac{1}{2}\)

\(\Rightarrow\)\(1+\frac{2}{n-1}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n-1}=-\frac{1}{2}\)

\(\Leftrightarrow n-1=-4\)

\(\Leftrightarrow n=-3\) (t/m ĐKXĐ)

27 tháng 6 2017

a) Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in Z\right)\)

\(\Rightarrow B=\dfrac{5^{12}+2}{5^{13}+2}< 1\)

\(B< \dfrac{5^{12}+2+48}{5^{13}+2+48}\Rightarrow B< \dfrac{5^{12}+50}{5^{13}+50}\Rightarrow B< \dfrac{5^2\left(5^{10}+2\right)}{5^2\left(5^{11}+2\right)}\Rightarrow B< \dfrac{5^{10}+2}{5^{11}+2}=A\)\(B< A\)

27 tháng 6 2017

bạn ơi thế còn phần b thì sao? Mong bạn có câu trả lời sớm tớ cảm ơn bạn nhiều lắm

9 tháng 5 2016

gọi d là UCLN của n+2 và 2n+3

ta có n+2 chia hết cho d=> 2(n+2)chia hết cho d => 2n+4 chia hết cho d(1)

ta có 2n+3 chia hết cho d (2)

lấy (1)-(2) ta có (2n+4)-(2n+3 )chia hêt cho d

=> 1 chia hết cho d vậy d=(1; -1)

vậy \(\frac{n+2}{2n+3}\) tối giản

 

9 tháng 5 2016

B=\(\frac{n+1}{n-2}\)

a. để B là phân số thì n-2 khác 0 => n khác 2

b.B=\(\frac{n+1}{n-2}\)\(\frac{n-2+3}{n-2}\)\(\frac{n-2}{n-2}\)+\(\frac{3}{n-2}\)=1+\(\frac{3}{n-2}\)

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để B nguyên thì n=(-1;1;3;5)

26 tháng 5 2017

a)Phân số P tồn tại khi:n-2#0 và \(\left(2n-1;n-2\right)\in Z\)

b Thay \(\dfrac{3}{12}\) vào n, ta có:

\(\dfrac{2.\dfrac{3}{12}-1}{\dfrac{3}{12}-2}=\dfrac{\dfrac{-1}{2}}{\dfrac{-7}{4}}=\dfrac{2}{7}\)

b)Muốn giá trị của P\(\in\)Z thì 2n-1\(⋮\)n-2 \(\Rightarrow\)2n-4+3\(⋮\)n-2

Mà 2n-4\(⋮\)n-2\(\Rightarrow\)3\(⋮\)n-2\(\Rightarrow\)n-2\(\in\)Ư(3)=\(\left\{-3;-1;1;3\right\}\)

+ n-2=-3\(\Rightarrow\)n=-1

+ n-2=-1\(\Rightarrow\)n=1

+ n-2=1\(\Rightarrow\)n=3

+ n-2=3\(\Rightarrow\)n=5

Để P đạt được giá trị lớn nhất thì n phải là số 5

20 tháng 3 2017

\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)

20 tháng 3 2017

Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)

\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)

\(\Rightarrow A=\dfrac{36}{49}\)