Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)
\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)
b: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{-\left(4+2\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{-\left(3+2\sqrt{3}\right)}{\sqrt{3}+1}=\dfrac{-3-\sqrt{3}}{2}\)
c: Để P<0 thì -(x-1)<0
=>x-1>0
=>x>1
Bài 2:
a: =>25x=35^2=1225
=>x=49
b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
=>x=-1
Bài 1)
ĐK: \(x\geq 0; x\neq -4\)
Ta có:
\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)
\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)
\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)
\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)
\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)
Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)
PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.
Bài 2 : Tọa độ điểm B ?
Bài 3:
Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)
\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)
Khi đó:
\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)
\(\Rightarrow x_1=10-2m\)
\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)
Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)
\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)
\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)
\(\Leftrightarrow 9m^2-72m+159=0\)
\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn điều kiện trên.
a: \(A=\left(\dfrac{\sqrt{x}}{x+2}+\dfrac{6\sqrt{x}}{x-4}\right)\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{x-2\sqrt{x}+6\sqrt{x}}{x-4}\cdot\dfrac{\sqrt{x}+2}{1}=\dfrac{x+4\sqrt{x}}{\sqrt{x}-2}\)
b: \(M=A:B=\dfrac{x+4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{x+4\sqrt{x}}{\sqrt{x}+1}\)
b: \(M-1=\dfrac{x+4\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{x+3\sqrt{x}-1}{\sqrt{x}+1}>0\)
=>M>1
\(M=\frac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
a.Ta co:\(x^2-x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\left(n\right)\end{cases}}\)
\(\Rightarrow M=\frac{1-2}{1}=-1\)
b.De \(M\in Z\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}}\in Z\Rightarrow\sqrt{x}-2⋮\sqrt{x}\Rightarrow x=4\)
ĐKXĐ: \(x\ge0;x\ne9\)
\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
\(P=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(P=\left(\dfrac{-3\sqrt{x}-3}{x-3}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(P=\dfrac{-3}{\sqrt{x}+3}\)
b/ Do \(-3< 0\Rightarrow P_{min}\) khi \(\sqrt{x}+3\) nhỏ nhất
Mà \(\sqrt{x}+3\ge3\Rightarrow P_{min}=\dfrac{-3}{3}=-1\) khi \(\sqrt{x}+3=3\Leftrightarrow x=0\)
Vậy với \(x=0\) thì P đạt GTNN
a) \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\)
Dấu bằng xảy ra khi x=0
Vậy x=0 thì P đạt GTNN là -1
ĐKXĐ : \(x>0\) và \(x\ne1\)
Câu a : \(P=\left(\dfrac{2-x}{x-\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2-x+\sqrt{x}+x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Câu b : Thay \(x=\dfrac{9}{16}\) vào P ta được :
\(P=\dfrac{\sqrt{\dfrac{9}{16}}-1}{\sqrt{\dfrac{9}{16}}}=\dfrac{\dfrac{3}{4}-1}{\dfrac{3}{4}}=\dfrac{\dfrac{-1}{4}}{\dfrac{3}{4}}=-\dfrac{1}{3}\)
Câu c : Để \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)
\(\Leftrightarrow2\sqrt{x}-2< \sqrt{x}\)
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Câu 2:
\(x^2-2\left(m-3\right)x-1=0\)
a=1; b=-2m+6; c=-1
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-6\right)^2-3\cdot\left(-1\right)\)
\(=4m^2-24m+36+3\)
\(=\left(2m-6\right)^2+3\ge3\)
Dấu '=' xảy ra khi m=3
a) \(P=\dfrac{3m+\sqrt{9m}-3}{m+\sqrt{m}-2}-\dfrac{\sqrt{m}-2}{\sqrt{m}-1}+\dfrac{1}{\sqrt{m}+2}-1\)
\(=\dfrac{3m+3\sqrt{m}-3}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}-\dfrac{m-4}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}+\dfrac{\sqrt{m}-1}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}-\dfrac{m+\sqrt{m}-2}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}\)
\(=\dfrac{3m+3\sqrt{m}-3-m+4+\sqrt{m}-1-m-\sqrt{m}+2}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}\)
\(=\dfrac{m+3\sqrt{m}+2}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}=\dfrac{\left(\sqrt{m}+1\right)\left(\sqrt{m}+2\right)}{\left(\sqrt{m}-1\right)\left(\sqrt{m}+2\right)}=\dfrac{\sqrt{m}+1}{\sqrt{m}-1}\)
b) Đk: \(\left\{{}\begin{matrix}m\ge0\\m\ne1\end{matrix}\right.\)
\(\left|P\right|=2\Leftrightarrow\left|\dfrac{\sqrt{m}+1}{\sqrt{m}-1}\right|=2\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{m}+1}{\sqrt{m}-1}=-2\\\dfrac{\sqrt{m}+1}{\sqrt{m}-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{m}+1=-2\sqrt{m}+2\\\sqrt{m}+1=2\sqrt{m}-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{m}=1\\\sqrt{m}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{9}\left(N\right)\\m=9\left(N\right)\end{matrix}\right.\)
c) \(P=\dfrac{\sqrt{m}+1}{\sqrt{m}-1}=\dfrac{\sqrt{m}-1+2}{\sqrt{m}-1}=1+\dfrac{2}{\sqrt{m}-1}\)
\(P\in N\Rightarrow\dfrac{2}{\sqrt{m}-1}\in Z\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{m}-1=-2\\\sqrt{m}-1=-1\\\sqrt{m}-1=1\\\sqrt{m}-1=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{m}=-1\left(VN\right)\\\sqrt{m}=0\left(1\right)\\\sqrt{m}=2\left(VN,m\ne N\right)\\\sqrt{m}=3\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow m=0\left(loại,P\notin N\right)\)
(2) \(\Leftrightarrow m=9\left(N\right)\)
Kl: a) \(P=\dfrac{\sqrt{m}+1}{\sqrt{m}-1}\)
b) m=1/9 , m = 9
c) m =9