\(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

\(P=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{4x^2-x^4+1-4x^2}{1-4x^2}\)

\(=\frac{3x^3+3x}{1-4x^2}:\frac{1-x^4}{1-4x^2}\)

\(=\frac{3x\left(x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\)

\(=\frac{3x}{1-x^2}\)

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

26 tháng 8 2020

a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+\left|x-3\right|\)

\(=x+3-\left(x-3\right)\)

\(=x+3-x+3\)

\(=6\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)

\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=\left|x+2\right|-\left|x\right|\)

\(=x+2-\left(-x\right)\)

\(=x+2+x\)

\(=2x+2=2\left(x+1\right)\)

c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)

\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)

\(=\frac{\left|x-1\right|}{x-1}\)

\(=\frac{x-1}{x-1}=1\)

d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)

\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)

\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)

\(=\left|x-2\right|-1\)

\(=-\left(x-2\right)-1\)

\(=-x+2-1\)

\(=-x+1=-\left(x-1\right)\)

28 tháng 6 2019

nhanh hộ mình

13 tháng 7 2021

a) ĐKXĐ: \(x\ge0\)\(1-4x\ne\)0; \(2\sqrt{x}-1\ne0\)\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\ne\)0

<=> \(x\ge0\); x \(\ne\)1/4

Ta có:  \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(A=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x+2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}\right)\)

\(A=\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{6x+4x+2\sqrt{x}}\)

\(A=\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\)

b)Với x \(\ge\)0 và x \(\ne\)1/4

Ta có: A > A2 <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\left(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)^2\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\left(1-\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)>0\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10x+2\sqrt{x}-\sqrt{x}+1}{10x+2\sqrt{x}}>0\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10+\sqrt{x}+1}{10x+2\sqrt{x}}>0\)

<=> \(\sqrt{x}-1>0\) <=> \(x>1\)

c) Với x\(\ge\)0 và x \(\ne\)1/4 (1)

Ta có: \(\left|A\right|>\frac{1}{4}\) <=> \(\orbr{\begin{cases}A>\frac{1}{4}\\A< -\frac{1}{4}\end{cases}}\)

TH1: \(A>\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\frac{1}{4}\)

<=> \(4\left(\sqrt{x}-1\right)>10x+2\sqrt{x}\)

<=> \(4\sqrt{x}-4>10x+2\sqrt{x}\)

<=> \(10x-2\sqrt{x}+4< 0\)(vô liia  vì \(10x-2\sqrt{x}+4>0\))

TH2: \(A< -\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}< -\frac{1}{4}\)

<=> \(4\left(\sqrt{x}-1\right)< -10x-2\sqrt{x}\)

<=> \(4\sqrt{x}-4+10x+2\sqrt{x}< 0\)

<=> \(10x+6\sqrt{x}-4< 0\)

<=> \(5x+3\sqrt{x}-2< 0\)

<=> \(\left(5\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)

<=> \(x< \frac{4}{25}\) (2)

Từ (1) và (2) => \(0\le x< \frac{4}{25}\)