\(A=\frac{6\cdot x^2+8\cdot x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Lớp 8 thì

Hôm nay thi cấp huyện mà

Fải k?//

Thi tốt nghen>>>~~~~

17 tháng 2 2017

\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\)

<=>\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{\left(x-1\right)x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(-6\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

<=>\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{x^2-x}{x^3-1}+\frac{-6x^2-6x-6}{x^3-1}\)

<=>\(A=\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)<=>\(A=\frac{1}{x-1}\)<=>\(4A=\frac{4}{x-1}\)

Theo đề bài 4A=x-1 => \(4A=\frac{4}{x-1}=x-1\Rightarrow\left(x-1\right)^2=4\Rightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vì x<0 nên x=-1

a: \(P=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)\cdot\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)\cdot\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{1}{x+2}\cdot\dfrac{x^3-x-2x+2}{x^2+x+1}\right)\)

\(=\left(\dfrac{x}{x+2}-\dfrac{x^2-2x+4}{\left(x+2\right)^2}\right):\left(\dfrac{1}{x+2}\cdot\dfrac{x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)}{x^2+x+1}\right)\)

\(=\dfrac{x^2+2x-x^2+2x-4}{\left(x+2\right)^2}:\left(\dfrac{1}{x+2}\cdot\dfrac{\left(x-1\right)\left(x^2+x-2\right)}{x^2+x+1}\right)\)

\(=\dfrac{4x-4}{\left(x+2\right)^2}:\left(\dfrac{1}{x+2}\cdot\dfrac{\left(x-1\right)\left(x+2\right)\left(x-1\right)}{x^2+x+1}\right)\)

\(=\dfrac{4\left(x-1\right)}{\left(x+2\right)^2}\cdot\dfrac{x^2+x+1}{\left(x-1\right)^2}=\dfrac{4\left(x^2+x+1\right)}{\left(x+2\right)^2\left(x-1\right)}\)

b: Để P>0 thì x-1>0

hay x>1

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

12 tháng 6 2018

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

1 tháng 5 2021

dễ mà ko bt lm à