\(\frac{x+2}{x-1}\)

a) Tìm x thuộc Z để A thuộc Z

b) tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Ta có : A = \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để A thuộc Z thì 3 chia hết cho x - 1

Hay x - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

x - 1-3-113
x-2024
10 tháng 6 2017

Để A > 1 thì 3/x - 1 > 0

Do đó : x - 1 > 0 

=> x > 1 

Vậy x > 1 thì A > 1

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)

9 tháng 8 2019

a) bài 1

để \(x\in Z\)thì \(3x-1⋮x-1\)

mà \(x-1⋮x-1\)

\(\Rightarrow3\left(x-1\right)⋮x-1\)

\(\Rightarrow\left(3x-1\right)-\left[3x-3\right]⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

ta có bảng

x-11-12-2
x203-1

vậy \(x\in\left\{2;0;3;-1\right\}\)

9 tháng 8 2019

còn nữa mà bạn

10 tháng 10 2016

\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)

Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)

Mà Ư(7)={1;-1;7;-7}

=>x+3={1;-1;7;-7}

Ta có bảng sau:

x+31-17-7
x-2-44-10

Vậy x={-10;-4;-2;4}

 

10 tháng 10 2016

Ta có:

\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)

Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)

Các giá trị A nguyên tương ứng là: 5; -9; -1; -3

Vậy \(\begin{cases}x=-2\\A=5\end{cases}\)\(\begin{cases}x=-4\\A=-9\end{cases}\)\(\begin{cases}x=4\\A=-1\end{cases}\)\(\begin{cases}x=-10\\A=-3\end{cases}\)

30 tháng 6 2017

a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)

b. Thay số vào rồi tính là ra nhé bạn.

c. \(f\left(x\right)=\frac{1}{4}\)

\(\frac{x+2}{x-1}=\frac{1}{4}\)

4(x + 2) = x - 1

4x + 8 = x - 1

4x - x = -1 - 8

3x = -9

x = -3

d. \(f\left(x\right)\in Z\)

\(\Rightarrow\frac{x+2}{x-1}\in Z\)

\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)

\(\Rightarrow1+\frac{3}{x-1}\in Z\)

\(\Rightarrow\frac{3}{x-1}\in Z\)

Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)

Ta có bảng sau:

x - 1-1-313
x0-224

Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)

e. f(x) > 0

\(\Leftrightarrow\frac{x+2}{x-1}>0\)

\(\Rightarrow1+\frac{3}{x-1}>0\)

\(\Rightarrow\frac{3}{x-1}>-1\)

\(\Rightarrow x-1>-3\)

\(\Rightarrow x>-2\)

27 tháng 10 2015

A= \(\frac{x+6}{x-4}=\frac{x-4+10}{x-4}=1+\frac{10}{x-4}\)

Để A \(\in\)Z

=> 1+\(\frac{10}{x-4}\)\(\in\)Z

=> \(\frac{10}{x-4}\in\)Z

=> x-4 \(\ne\)0

=> x\(\ne\)4

Vậy x\(\ne\)4 thì A\(\in\)​Z 

b) Để A>0 

=> 1+\(\frac{10}{x-4}\)>0

=> \(\frac{10}{x-4}>-1\)

=> x-4 >-10

=> x> -6

Vậy x> -6 thì A>0

c) 

Để A\(\le\)0

=> 1+\(\frac{10}{x-4}\le0\)

=> \(\frac{10}{x-4}\le-1\)

=> x-4\(\le\)-10

=> x\(\le\)-6

Vậy .....

 

9 tháng 6 2016

a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì  x - 2 là ước của 5. 
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
*  x = 3  =>  A = 6

*  x = 7  =>  A = 2 
*  x = 1  =>  A = - 4

*  x = -3  =>  A = 0 
b)  \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì  x + 3 là ước của7. 
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
*  x = -2  =>  A = 5

*  x = 4  =>  A = -1 
*  x = -4   =>  A = - 9

*  x = -10  =>  A = -3 . 

 

11 tháng 12 2017

Số 1 ở đâu vậy ạ ?

2 tháng 3 2018

\(A=\frac{x^2+1}{x+1}=\frac{x^2-1+2}{x+1}=\frac{x^2-1}{x+1}+\frac{2}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}+\frac{2}{x+1}=x-1+\frac{2}{x+1}\)

\(B=\frac{x^2-2}{x+1}=\frac{x^2-1-1}{x+1}=\frac{x^2-1}{x+1}-\frac{1}{x+1}=\frac{\left(x+1\right)\left(x-1\right)}{x+1}-\frac{1}{x+1}=x-1-\frac{1}{x+1}\)

\(5C=\frac{5x-10}{5x+1}=\frac{5x+1-11}{5x+1}=1-\frac{11}{5x+1}\)

2 tháng 1 2019

a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )

Để A > 0 thì có 2 trường hợp :

+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)

Để A < 0 thì có 2 trường hợp :

+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)

2 tháng 1 2019

b) Để A thuộc Z thì x -7 ⋮ x + 4

<=> x + 4 - 11 ⋮ x + 4 

Vì x + 4 ⋮ x + 4

=> 11 ⋮ x + 4

=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }

=> x thuộc { -3; 7; -5; -15 }

Vậy...........

14 tháng 8 2018

Để x thuộc Z thì : à dấu " : " là " chia hết cho " nhá ^^

2x - 1 : x + 2

2x + 2 -3 : x + 2

mà 2x + 2 : x + 2 => 3 : x + 2 => x + 2 thuộc Ư(3) = { 1; -1; 3; -3 }

+) x + 2 = 1

x = -1

+) x + 2 = -1

x = -3

+) x + 2 = 3

x = 1

+) x + 2 = -3

x = -5

Vậy,.........

27 tháng 2 2020

Để x thuộc Z thì : à dấu " : " là " chia hết cho " nhá ^^
2x - 1 : x + 2
2x + 2 -3 : x + 2
mà 2x + 2 : x + 2 => 3 : x + 2 => x + 2 thuộc Ư(3) = { 1; -1; 3; -3 }
+) x + 2 = 1
x = -1
+) x + 2 = -1
x = -3
+) x + 2 = 3
x = 1
+) x + 2 = -3
x = -5
Vậy,.........