\(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)

\(\Rightarrow x=2015k;y=2016k;z=2017k\) \(\left(1\right)\)

Thay (1) vào đề bài ta được:

\(\left(2015k-2017k\right)^3:\left[\left(2015k-2016k^2\right)\left(2016k-2017k\right)\right]\)

\(=\left(-2k\right)^3:\left[-k^2\left(-k\right)\right]\)

\(=-8k^3:\left(-k\right)^3\)

\(=8\)

Vậy \(\left(x-z\right)^3:\left[\left(x-y\right)^2\left(y-z\right)\right]=8.\)

4 tháng 3 2017

nhất,nhị, tam.....bát

Bạn vào câu hỏi tương tự có nha, hoặc vào link này: https://hoc24.vn/hoi-dap/question/198034.html

9 tháng 6 2017

\(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-1}\Leftrightarrow x-z=x-y=y-z\Rightarrow x=y=z.\)

2 tháng 5 2018

viết lại bt P đi

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

18 tháng 3 2018

@ Mashiro Shiina

@Akai Haruma

@Nguyễn Thanh Hằng

@Đẹp Trai Không Bao Giờ Sai

2 tháng 5 2018

Ta có :

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)

TH1: \(x+y+z\ne0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)

TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)

\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)

Vậy P=8 hoặc P=-1

9 tháng 3 2017

TH1: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(y+z=-x\)

\(x+z=-y\)

\(\Rightarrow M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\dfrac{-xyz}{8xyz}=\dfrac{-1}{8}\)

TH2: \(x+y+z\ne0\)

\(\Rightarrow2x+2y-z=3\)

\(\Rightarrow2x+2y=4z\)

\(\Rightarrow x+y=2z\)

\(x+z=2y\)

\(y+z=2x\)

\(\Rightarrow M=\dfrac{2z.2y.2x}{8xyz}=1\)

Vậy: \(M=\dfrac{-1}{8}\) hoặc \(1\)

9 tháng 3 2017

Ta có \(\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x+2y-z}{z}=3\\\dfrac{2x+2z-y}{y}=3\\\dfrac{2y+2z-x}{x}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y-z=3z\\2x+2z-y=3y\\2y+2z-x=3x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y=4z\\2x+2z=4y\\2y+2z=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=2z\\x+z=2y\\y+z=2x\end{matrix}\right.\)

Ta có \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}\)

\(\Rightarrow M=\dfrac{2x.2y.2z}{8xyz}=\dfrac{8xyz}{8xyz}=1\)

Vậy \(M=1\)