K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)

Phần gì không hiểu thì hỏi nhé

31 tháng 10 2019

mod10 là j

24 tháng 7 2021

o biết
 

12 tháng 12 2017

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3 

12 tháng 12 2017

thế rút gọn thì sao

8 tháng 12 2019

Bài 2 : 

a) Vì ƯCLN(a,b)=16 nên ta có : \(\hept{\begin{cases}a⋮16\\b⋮16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=16m\\b=16n\\ƯCLN\left(m,n\right)=1\end{cases}}\)

Mà a+b=128

\(\Rightarrow\)16m+16n=128

\(\Rightarrow\)16(m+n)=128

\(\Rightarrow\)m+n=8

Vì ƯCLN(m,n)=1 và m>n nê ta có bảng sau :

m       7          5

n        1           3

a        112       80

b         16        48

Vậy (a;b)\(\in\){(112;16):(80;48)}

b) Gọi ƯCLN(2n+1,6n+1) là d  (d\(\in\)N*)

Vì ƯLN(2n+1,6n+1)=d nên ta có : 2n+1\(⋮\)d và 6n+1

\(\Rightarrow\)2n+1-6n+1\(⋮\)d

\(\Rightarrow\)6(2n+1)-2(6n+1)\(⋮\)d

\(\Rightarrow\)12n+6-12n+2\(⋮\)d

\(\Rightarrow\)4\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}

Mà 2n+1 là số lẻ

\(\Rightarrow\)d=1

\(\Rightarrow\)2n+1 và 6n+1 là 2 số nguyên tố cùng nhau

Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.

8 tháng 12 2019

Bài 3 :

Ta có : A=1+2+23+...+22018

         2A=2+22+24+...+22019

\(\Rightarrow\)2A-A=(2+22+24+...+22019)-(1+2+23+...+22018)

\(\Rightarrow\)A=22019-1

Mà B=22019-1

\(\Rightarrow\)A=B

Vậy A=B.

7 tháng 11 2015

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu