Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2k6 thì dạng này EZ quá còn gì:)
\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}-15y=0\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\Leftrightarrow\sqrt{x}=5\sqrt{y}\Leftrightarrow x=25y\)
Khi đó : \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Ta có :\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}+y-16y=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}-4\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+4\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=5\sqrt{y}\\\sqrt{x}=-3\sqrt{y}\end{cases}}\)
\(\Leftrightarrow\sqrt{x}=5\sqrt{y}\)(do x,y>0)
\(\Leftrightarrow x=25y\)(*)
Thay (*) vào biểu thức E ta được: \(E=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Vậy giá trị của biểu thức E là 2.
ta có:\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\Leftrightarrow x-2\sqrt{xy}-3y-15y=0\Leftrightarrow\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\Leftrightarrow\left(\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-5\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+3\sqrt{y}=0\\\sqrt{x}-5\sqrt{y}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-3\sqrt{y}\left(loai\left(vi-x,y>0\right)\right)\\\sqrt{x}=5\sqrt{y}\end{cases}}}\)
thay \(\sqrt{x}=5\sqrt{y}\) vào E ta có:
\(E=\frac{2\left(5\sqrt{y}\right)^2+5\sqrt{y.y}+3y}{\left(\sqrt{5y}\right)^2+5\sqrt{y.y}-y}=\frac{y\left(50+5+3\right)}{y\left(25+5-1\right)}=2\)
vậy E =2
1) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt
\(x+y=3\sqrt{xy}\)
\(\Leftrightarrow\)\(\frac{x}{y}+1=3\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow\)\(\frac{x}{y}-3\sqrt{\frac{x}{y}}+\frac{9}{4}=\frac{5}{4}\)
\(\Leftrightarrow\)\(\left(\sqrt{\frac{x}{y}}-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\)\(\frac{x}{y}=\frac{7+3\sqrt{5}}{2}\)
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)
\(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)
<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)
<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:
\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)
--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
\(\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=7+2\sqrt{10}-3\)
\(=4+2\sqrt{10}\)
- √12-√27+√3
- (√12-2√75).√3
- √252-√700+√7008-√448
- √3.(√12+√27-√3)
- (√2.3√3-5√6):√54