Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)
Từ đó ta có lời giải bài toán làm tiếp đi nhé
Ta có :
3a2 + 3b2 = 10ab
<=> 3a2 + 3b2 - 10ab = 0
<=>4a2 - a2 + 4b2 - b2 - 8ab- 2ab = 0
<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0
<=> ( 2a + 2b )2 - ( a - b )2 = 0
<=> ( 2a + 2b )2 = ( a - b )2
<=> 2a + 2b = a - b ( 1 )
Thay (1) vào P ta được :
\(P=\frac{2a+2b}{a+b}\)
\(P=\frac{2\left(a+b\right)}{a+b}\)
\(P=2\)
Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi " hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này
Bài 3:
\(\dfrac{a}{b}=\dfrac{3}{10}\)
=>3a=10b
=>\(a=\dfrac{10b}{3}\)
Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)
\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)
bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)
a= 3b loại vì b > a > 0
Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :
\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vậy A =-1/2
b, tương tự tìm a theo b rồi thay vào biểu thức
Nếu bn ko lm đc thì bảo mk nha
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow3a^2-9ab-ab+3b^2=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
=>b=3a hoặc a=3b
TH1: b=3a
\(P=\dfrac{b-a}{b+a}=\dfrac{3a-a}{3a+a}=\dfrac{2a}{4a}=\dfrac{1}{2}\)
TH2: a=3b
\(P=\dfrac{b-3b}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
Ta có : \(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-ab-9ab+3b^2=0\)
\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=3a\left(L\right)\\a=3b\left(N\right)\end{matrix}\right.\)
Thế \(a=3b\) vào P ta được :
\(P=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)
từ 3a2+3b2=10ab\(\Rightarrow\)P^2=\(\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)\(\Rightarrow\)P^2=1/4
mặt khác b>a>0\(\Rightarrow\)P<0\(\Rightarrow\)P=-1/2
Ta có : \(P=\frac{a-b}{a+b}\Rightarrow P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)
(Vì P > 0 và a>b>0)
Xét:
\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)Mà \(P>0\Rightarrow P=\dfrac{1}{2}\)
Sửa đề là: a>b>0 nha