\(3a^2+3b^2=10ab\).Tính giá trị biểu thức \(P=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Xét:

\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)\(P>0\Rightarrow P=\dfrac{1}{2}\)

9 tháng 4 2017

Sửa đề là: a>b>0 nha

23 tháng 5 2018

Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)

Từ đó ta có lời giải bài toán làm tiếp đi nhé

Y
4 tháng 6 2019

gt \(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Rightarrow a-3b=0\) ( do \(3a-b>0\forall a>b>0\))

\(\Rightarrow a=3b\)

khi đó \(P=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

23 tháng 5 2018

Ta có :

3a2 + 3b2 = 10ab

<=> 3a2 + 3b2 - 10ab = 0

<=>4a- a2 + 4b2  - b- 8ab- 2ab = 0

<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0

<=> ( 2a + 2b )2 - ( a - b )2 = 0

<=> ( 2a + 2b )2 = ( a - b )2

<=> 2a + 2b = a - b  ( 1 )

Thay (1) vào P ta được :

\(P=\frac{2a+2b}{a+b}\)

\(P=\frac{2\left(a+b\right)}{a+b}\)

\(P=2\)

23 tháng 5 2018

Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi "  hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này

2 tháng 12 2017

Bài 3:

\(\dfrac{a}{b}=\dfrac{3}{10}\)

=>3a=10b

=>\(a=\dfrac{10b}{3}\)

Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)

\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)

2 tháng 12 2017

bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-9ab-ab+3b^2=0\)

\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)

a= 3b loại vì b > a > 0

Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :

\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)

Vậy A =-1/2

b, tương tự tìm a theo b rồi thay vào biểu thức

Nếu bn ko lm đc thì bảo mk nha

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow3a^2-9ab-ab+3b^2=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

=>b=3a hoặc a=3b

TH1: b=3a

\(P=\dfrac{b-a}{b+a}=\dfrac{3a-a}{3a+a}=\dfrac{2a}{4a}=\dfrac{1}{2}\)

TH2: a=3b

\(P=\dfrac{b-3b}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)

9 tháng 8 2017

Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)

Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)

\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)

Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)

7 tháng 5 2019

Sao cách em làm ra kết quả khác ah Hùng ạ:Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9 

24 tháng 9 2018

Ta có : \(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-ab-9ab+3b^2=0\)

\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=3a\left(L\right)\\a=3b\left(N\right)\end{matrix}\right.\)

Thế \(a=3b\) vào P ta được :

\(P=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)

28 tháng 2 2016

từ 3a2+3b2=10ab\(\Rightarrow\)P^2=\(\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)\(\Rightarrow\)P^2=1/4

mặt khác b>a>0\(\Rightarrow\)P<0\(\Rightarrow\)P=-1/2

31 tháng 5 2016

Ta có : \(P=\frac{a-b}{a+b}\Rightarrow P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)

(Vì P > 0 và a>b>0)

31 tháng 5 2016

3a2+3b2=10ab =>( 3a2 - 9ab ) - ( ab - 3b2 ) = 0 => 3a(a - 3b) - b(a - 3b) = 0 => (a-3b)(3a-b) = 0.

Mà a> b > 0 => 3a - b = 0 => 3a = b.

Do đó: P = ( a - b )/( a + b ) = ( a - 3a )/( a + 3a )=-2a/4a=-1/2.