\(\left(\dfrac{a}{b}+1\right)\left(\dfrac{b}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

tồn tại A => a,b,c khác 0

=> a+b+c=0

\(A=\left(\dfrac{a}{b}+1.\right)\left(\dfrac{b}{c}+1.\right)\left(.\dfrac{c}{a}+1\right)=\left(\dfrac{a+b}{b}\right).\left(\dfrac{b+c}{c}\right).\left(\dfrac{c+a}{a}\right)=\left(\dfrac{-c}{b}\right).\left(\dfrac{-a}{c}\right).\left(\dfrac{-b}{a}\right)=-1\)\(\)

25 tháng 9 2017

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0

<=> \(\left[{}\begin{matrix}a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\end{matrix}\right.\)

TH1: a + b + c = 0

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

TH2: a = b = c

A = 2.2.2 = 8

19 tháng 1 2018

a,ta có: \(a^3+b^3+c^3=3abc\)

<=>\(a^3+b^3+c^3-3abc=0\)

<=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)2\left(a^2-ab+b^2-ac-bc+c^2\right)=0\)

<=>\(\left(a+b+c\right)\left(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right)=0\)

=>a=b,a=c,b=c

=>a=b=c

thay a=b=c vào P ta đc

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

9 tháng 4 2017

Giải:

Từ \(a^3+b^3+c^3=3abc\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Ta xét các trường hợp:

Trường hợp \(1\): Nếu \(a+b+c=0\) thì:

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Thay vào \(P\) ta có:

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{c}\right)\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{\cdot\left(-c\right).\left(-a\right).\left(-b\right)}{b.c.a}=-1\)

Trường hợp \(2\): Nếu \(a=b=c\) thì:

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

8 tháng 4 2017

ta có : a3+b3+c3-3abc=0

\(\Rightarrow\)(a+b)3+c3-3abc-3a2b-3ab2=0

\(\Rightarrow\)(a+b+c)(a2+b2+c2+2ab-ac-bc)-3ab(a+b+c)=0

\(\Rightarrow\)(a+b+c)(a2+b2+c2-ab-ac-bc)=0

\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\\\left(a+b+c\right)^2+a^2+b^2+c^2=0\Leftrightarrow a=b=c=0\left(bỏ\right)\end{matrix}\right.\)ta có P=(1+\(\dfrac{a}{b}\))(1+\(\dfrac{b}{c}\))(1+\(\dfrac{c}{a}\))

\(\Leftrightarrow\)p=\(\left(\dfrac{b+a}{b}\right)\left(\dfrac{c+b}{c}\right)\left(\dfrac{a+c}{a}\right)\)

\(\Leftrightarrow P=\left(\dfrac{-c}{b}\right)\left(\dfrac{-a}{c}\right)\left(\dfrac{-b}{a}\right)\)

\(\Leftrightarrow\)P=-1

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

12 tháng 4 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(tự nhân lại rồi phân tích)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+)Xét a+b+c=0\(\Rightarrow P=\dfrac{b+a}{b}\cdot\dfrac{c+b}{c}\cdot\dfrac{a+c}{a}=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=-1\)

+Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=2\cdot2\cdot2=8\)

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

15 tháng 10 2018

tran nguyen bao quan, Mysterious Person, @Nk>↑@, Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Lê Bùi, Hung nguyen, Trần Quốc Lộc, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Nguyễn Huy Tú, Phương An, Trần Việt Linh,...

15 tháng 10 2018

cái này bảo tìm GT \(\Rightarrow\) P có GT cố định

ta có : \(a=b=c=1\) thỏa mãn đk bài toán

thế vào P ta có \(P=0\)