\(\in\) n; x,y,z \(\in\) n*,a\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Do \(x,y\inℤ^+\) nên \(x,y\ge1\)

\(2^x+1=3^y\).Dễ thấy \(x\le y\).Đặt \(y=x+m\left(m\ge0\right)\) và \(m=y-x\)

Ta có: \(2^x+1=3^{x+m}\)

+Với \(x=y=1\Rightarrow2^1+1=3^{1+0}\left(TM\right)\)

+Với \(1\le x< y\Rightarrow3\le2^x+1< 2^y+1< 3^y\left(KTM\right)\)

Vậy \(x=y=1\) (p/s: không chắc cho lắm,tui mới học lớp 7 thoy)

24 tháng 12 2018

À mà bỏ cái "Đặt \(y=x+m\left(m\ge0\right)\) và m = y - x

Ta có: \(2^x+1=2^{x+m}\)"

Thay thành:"Ta có: \(2^x+1=2^y\)" .Làm xong rồi mới thấy một số chi tiết cần bỏ đi.

17 tháng 7 2017

a)x-25 ( x0 )

\(=\sqrt{x}^2-5^2=\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)\)

b) x-7 ( x0 )

\(=\sqrt{x}^2-\sqrt{7}^2=\left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right)\)

3 câu kia tách thành mũ 3 nhé

31 tháng 10 2020

Có: \(x,y\ge1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\Leftrightarrow xy\ge x+y-1\)

Có: \(0\le a\le1\Rightarrow a\left(a-1\right)\le0\Leftrightarrow a^2\le a\)

Khi đó: \(M=a^2+b^2+c^2+x^2+y^2+x^2\)

\(\le a+b+c+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(\le a+b+c+6\left(x+y+z\right)-2\left[2\left(x+y+z\right)-3\right]\)

\(=6-\left(x+y+z\right)+2\left(x+y+z\right)+6\)

\(=\left(x+y+z\right)+12\le6+12=18\)

Dấu "=" xảy ra khi và chỉ khi a=b=c=0; x=y=1; z=4

31 tháng 10 2020

nice solution

19 tháng 4 2019

a) \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

\(\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

b)

Ta có

\(\frac{ab}{c+1}=\frac{ab}{a+b}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\frac{bc}{a+1}=\frac{bc}{\left(a+b\right)+\left(a+c\right)}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\frac{ac}{b+1}=\frac{ac}{\left(a+b\right)+\left(b+c\right)}\le\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Leftrightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(A+b\right)}+\frac{ac}{4\left(b+c\right)}\)

\(=\frac{ab+bc}{4\left(a+c\right)}+\frac{ab+ac}{4\left(b+c\right)}+\frac{bc+ac}{4\left(a+b\right)}=\frac{1}{4}\left(\frac{b\left(a+c\right)}{a+c}\right)+\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}\right)+\frac{c\left(a+b\right)}{a+b}\)

\(=\frac{a+b+c}{4}=\frac{1}{4}\)

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

23 tháng 4 2017

b) ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+y\right)^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

- Thay \(x^2+y^2=1\)

\(\Rightarrow\)\(2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\le\sqrt{2}\)

\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

23 tháng 4 2017

- Áp dụng bđt: \(a^2+b^2+c^2\ge ab+bc+ac\)

có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

- Áp dụng tiếp bđt trên

có: \(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+c^2ab\) (2)

\(\Leftrightarrow\)\(a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (3)

(1),(2),(3)\(\Rightarrow\) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2