\(\le t\le1\)

CMR: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2021

\(\sqrt{\dfrac{a}{b+c-ta}}=\dfrac{a\sqrt{t+1}}{\sqrt{\left(at+a\right)\left(b+c-ta\right)}}\ge\dfrac{2a\sqrt{t+1}}{at+a+b+c-ta}=\dfrac{2a\sqrt{t+1}}{a+b+c}\)

Làm tương tự, cộng lại và rút gọn

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

10 tháng 9 2017

set \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\)\(\Rightarrow x+y+z=3\)

\(VT=\sum\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)}{4x}}=\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}.\left(\sum\dfrac{1}{\sqrt{4x\left(y+z\right)}}\right)\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{\sqrt{4x\left(y+z\right)}}+\dfrac{1}{\sqrt{4y\left(x+z\right)}}+\dfrac{1}{\sqrt{4z\left(x+y\right)}}\ge\dfrac{9}{2\left(\sqrt{xy+xz}+\sqrt{yz+yx}+\sqrt{xz+zy}\right)}\)

Áp dụng BĐT bunyakovsky:

\(\sum\sqrt{xy+yz}\le\sqrt{6\left(xy+yz+xz\right)}\)

\(\Rightarrow\sum\dfrac{1}{2\sqrt{x\left(y+z\right)}}\ge\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}\)

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{3}\left(xy+yz+xz\right)\)(*)

\(\Rightarrow VT\ge\sqrt{\dfrac{8}{3}\left(xy+yz+xz\right)}.\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}=3\)

Dấu = xảy ra khi x=y=z hay a=b=c=1

(*) Prove BĐT \(\left(m+n\right)\left(n+p\right)\left(m+p\right)\ge\dfrac{8}{9}\left(m+n+p\right)\left(mn+np+pm\right)\)

khai triển ,để ý rằng \(\left(m+n\right)\left(n+p\right)\left(p+m\right)=\left(m+n+p\right)\left(mn+np+pm\right)-mnp\)

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Đặt \(\left ( \frac{\sqrt{a^2+b^2}}{c},\frac{\sqrt{b^2+c^2}}{a}, \frac{\sqrt{c^2+a^2}}{b} \right )=(x,y,z)\)

BĐT cần chứng minh tương đương với:
\(x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\((*)\)

------------------------------------------------------------------

Từ cách đặt $x,y,z$ ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\)

Áp dụng BĐT Bunhiacopxky:

\(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}=\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\right)\left(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}\right)\)

\(\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

\(\Leftrightarrow 3\geq 2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Leftrightarrow xyz\geq \frac{2}{3}(x+y+z)\)

\(\Rightarrow xyz(x+y+z)\geq \frac{2}{3}(x+y+z)^2\)

Áp dụng BĐT AM_GM ta lại có:

\((x+y+z)^2\geq 3(xy+yz+xz)\). Do đó:

\(xyz(x+y+z)\geq 2(xy+yz+xz)\)

\(\Leftrightarrow x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Đúng theo \((*)\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

20 tháng 1 2018

áp dụng bat dang thuc bunhiacóki

ta có \(\dfrac{\sqrt{a^2+b^2}}{c}\ge\dfrac{a+b}{\sqrt{2}c}\)

ttu vt \(\ge\dfrac{1}{\sqrt{2}}\left(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)

=\(\dfrac{a}{\sqrt{2}}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{b}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+\dfrac{c}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) (1)

áp dung bdt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

ta có (1) \(\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\)

tiếp tục áp dụng bunhia ta có \(\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{\sqrt{2\left(b^2+c^2\right)}}=\dfrac{2a}{\sqrt{b^2+c^2}}\)

ttuong tu ta có \(vt\ge2\left(\dfrac{a}{\sqrt{b^2+c2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\left(dpcm\right)\)

7 tháng 11 2018

bđt \(\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Ta có: \(\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{bc}}{\sqrt{a}}\right)+\left(\dfrac{\sqrt{ab}}{\sqrt{c}}+\dfrac{\sqrt{ca}}{\sqrt{b}}\right)\ge2\sqrt{b}+2\sqrt{c}+2\sqrt{a}\)

\(\Leftrightarrow2\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\left(đpcm\right)\)

1. Cmr các số sau là số hữu tỉ: a. \(\sqrt{1+\sqrt{2}}\) b. \(m+\dfrac{\sqrt{3}}{n}\) với m, n là các số hữu tỉ, n\(\ne\)0 2. Xét xem các số a và b có thể là số vô tỉ hay không nếu: a. \(ab\) và \(\dfrac{a}{b}\) là các số hữu tỉ b. \(a+b\) và \(\dfrac{a}{b}\) là các số hữu tỉ \(\left(a+b\ne0\right)\) c. \(a+b\), \(a^2\) và \(b^2\) là các số hữu tỉ \(\left(a+b\ne0\right)\) 3. So sánh hai số: a. \(2\sqrt{3}\) và...
Đọc tiếp

1. Cmr các số sau là số hữu tỉ:

a. \(\sqrt{1+\sqrt{2}}\)

b. \(m+\dfrac{\sqrt{3}}{n}\) với m, n là các số hữu tỉ, n\(\ne\)0

2. Xét xem các số a và b có thể là số vô tỉ hay không nếu:

a. \(ab\)\(\dfrac{a}{b}\) là các số hữu tỉ

b. \(a+b\)\(\dfrac{a}{b}\) là các số hữu tỉ \(\left(a+b\ne0\right)\)

c. \(a+b\), \(a^2\)\(b^2\) là các số hữu tỉ \(\left(a+b\ne0\right)\)

3. So sánh hai số:

a. \(2\sqrt{3}\)\(3\sqrt{2}\)

b. \(6\sqrt{5}\)\(5\sqrt{6}\)

c. \(\sqrt{24}+\sqrt{45}\) và 12

d. \(\sqrt{37}-\sqrt{15}\) và 2

4.

a. Cho một ví dụ để chứng tỏ rằng khẳng định \(\sqrt{a}\le a\forall a>0\) là sai

b. Cho \(a\ge0\). Với giá trị nào của a thì \(\sqrt{a}>a\) ?

5.

a. Hãy chỉ ra một số thực x mà \(x-\dfrac{1}{x}\) là số nguyên \(\left(x\ne\pm1\right)\)

b. Cmr nếu \(x-\dfrac{1}{x}\) là số nguyên và \(\left(x\ne\pm1\right)\) thì x và \(x+\dfrac{1}{x}\) là số vô tỉ. Khi đó \(\left(x+\dfrac{1}{x}\right)^{2n}\)\(\left(x+\dfrac{1}{x}\right)^{2n+1}\) là số hữu tỉ hay số vô tỉ?

6. CM các số sau là số vô tỉ:

a. \(\sqrt{3}-\sqrt{2}\)

b. \(2\sqrt{2}+\sqrt{3}\)

7. Có tồn tại các số hữu tỉ dương hay không nếu:

a. \(\sqrt{a}+\sqrt{b}=\sqrt{2}\)

b. \(\sqrt{a}+\sqrt{b}=\sqrt{\sqrt{2}}\)

8. Cho 3 số x, y, \(\sqrt{x}+\sqrt{y}\) là các số hữu tỉ. Cmr mỗi số \(\sqrt{x}\), \(\sqrt{y}\) đều là các số hữu tỉ

9. Cho a,b,c,d là các số dương. Cmr tồn tại một số dương trong hai số \(2a+b-2\sqrt{cd}\)\(2c+d-2\sqrt{ab}\)

10.

a. Rút gọn \(A=\sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}\) với a>0

b. Tính giá trị của tổng \(B=\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)

11.

a. Nêu một cách tính nhẩm \(997^2\)

b. Tính tổng các chữ số của A, biết rằng \(\sqrt{A}=99..96\) (có 100 chữ số 9)

12. Cho biểu thức \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\)

a. Tìm các số nguyên a để M là số nguyên

b. Tìm các số hữu tỉ a để M là số nguyên

13. Cho \(a=\sqrt{2}-1\)

a. Viết \(a^2,a^3\) dưới dạng \(\sqrt{m}-\sqrt{m-1}\) trong đó m là số tự nhiên

b. Cmr với mọi số nguyên dương n, số \(a^n\) được viết dưới dạng trên

14. Cho \(am^3=bn^3=cp^3\)\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\). Cmr:\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)

15. Kể tên và viết những bất đẳng thức được học trong chương trình TOÁN THCS và THPT

16. Kể tên và viết những cách, phương pháp chứng minh bất đẳng thức được học trong chương trình TOÁN THCS và THPT

17. Cm các BĐT sau bằng tất cả phương pháp (hình học,phản chứng,...) có thể cm:

a. \(x^2+2\sqrt{x}+1>0\)

b. \(\sqrt{a+b}+\sqrt{a-b}< 2\sqrt{a}\) với \(a>b>0\)

c. \(a^3+b^3+abc\ge ab\left(a+b+c\right)\) với các số dương a,b,c

d. \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

e. \(\sqrt{a^2+b^2}\cdot\sqrt{b^2+c^2}\ge b\left(c+a\right)\) với các số dương a,b,c

f. \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\) với các số dương a,b,c,d

g. \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\) với các số dương a,b,c

h. \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\ge\dfrac{a+b+c+d}{2}\) với các số dương a,b,c,d

i. \(\dfrac{\left(a+b\right)^2}{2}+\dfrac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\) với a và b không âm

k. \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\) với các số dương a,b,c

l. \(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge2\) với các số dương a,b,c,d

m. \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

n. \(\dfrac{a+b}{2}-\sqrt{ab}< \dfrac{\left(a-b\right)^2}{8b}\) với a>b>0

o. \(\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\) với 3 số không âm a,b,c

p. \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\) với các số dương x,y,z

q. \(\left(1+\dfrac{1}{n}\right)^n< 3\) với mọi số nguyên dương n

r. Cho hai dãy số sắp thứ tự: \(a\ge b\ge c\)\(x\le y\le z\). Cm BĐT: \(\left(a+b+c\right)\left(x+y+z\right)\ge39ax+by+cz\)

18. Kí hiệu an là số nguyên gần \(\sqrt{n}\) nhất (n\(\in\) N*). Tính \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{1980}}\)

19.

a. So sánh \(a=\sqrt{2004}-\sqrt{2003}\)\(B=\sqrt{2005}-\sqrt{2004}\)

b. Tìm số dương nhỏ nhất trong các số sau: \(a=4\sqrt{5}-9,b=9-4\sqrt{5},c=7-4\sqrt{3},d=18-5\sqrt{13},e=2\sqrt{30}-11\)

c. Cho \(a=\sqrt{37}-\sqrt{35}\) . Tìm số lớn nhất nhỏ hơn a, số nhỏ nhất lớn hơn a trong các số sau: \(\dfrac{2}{13},\dfrac{1}{6},\dfrac{2}{11},\dfrac{1}{5},\dfrac{2}{9}\)

d. Cho \(a=\sqrt{65}-\sqrt{63}\) . Cmr \(\dfrac{1}{8}< a< \dfrac{2}{15}\), rồi tìm xem phần thập phân của a gần nhất với số nào trong các số \(0,12;0,13;0,14;0,15?\)

e. Cho \(A=\dfrac{1}{\sqrt{1\cdot1999}}+\dfrac{1}{\sqrt{2\cdot1998}}+\dfrac{1}{\sqrt{3\cdot1997}}+...+\dfrac{1}{\sqrt{1999\cdot1}}\). Cmr \(a>1,999\)

f. Cm với mọi số nguyên dương n: \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< 1\)\(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)

g. Cm với mọi số tự nhiên \(n\ge2\) đều có: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)

h. Cho 25 số tự nhiên a1,a2,...,a25 thỏa mãn điều kiện: \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{25}}}=9\). Cmr trong 25 số tự nhiên đó, tồn tại 2 số bằng nhau

i. Cm với mọi số nguyên dương n: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\dfrac{n+1}{2}}\)

k. Cho \(a=\dfrac{\sqrt{2}-\sqrt{2}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{25}-\sqrt{24}}{24+25}\). Cmr \(a< \dfrac{2}{5}\)

l. Cho \(A=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{2n-1}{2n}\left(n\in N,n\ge2\right)\). Cmr \(A< \dfrac{1}{\sqrt{2n+1}}\)\(A< \dfrac{1}{\sqrt{3n+1}}\)

m. Cmr nếu các đoạn thẳng có độ dài a,b,c lập được thành một tam giác thì các đoạn thẳng có độ dài \(\sqrt{a},\sqrt{b},\sqrt{c}\) cũng lập được thàng một tam giác

n. Cho a,b,c là 3 cạnh của một tam giác. Cm \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)

o. Tìm số tự nhiên n nhỏ nhất sao cho \(\sqrt{n}-\sqrt{n-1}< 0,01\)

p. Tìm số tự nhiên n nhỏ nhất để có BĐT: \(\left(a^2+b^2+c^2\right)^2\le n\left(a^4+b^4+c^4\right)\)

q. Cho các số dương a,b,c,d. Biết \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1\) . Cmr \(abcd\le\dfrac{1}{81}\)

r. Cho \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1.Cmr\) \(x^2+y^2=1\)

s. Cho \(a=\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}},b=2\sqrt[3]{3}\). Cmr \(a< b\)

u. Cm \(\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}< 2}\)(vế trái có 100 dấu căn)

v. Cm \(\dfrac{2-\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\dfrac{1}{4}\) (tử có 100 dấu căn, mẫu có 99 dấu căn)

t. Cmr trong các số có dạng \(\sqrt[n]{n}\) (n là số tự nhiên, \(n\ge2\)), số \(\sqrt[3]{3}\) có giá trị lớn nhất

x. Tìm 20 chữ số thập phân đàu tiên của số: \(\sqrt{0,99...9}\) (20 chữ số 9)

y. Cmr số \(\left(8+3\sqrt{7}\right)^7\) có 7 chữ số 9 liền sau dấu phẩy

z. Cmr số \(\left(7+4\sqrt{3}\right)^{10}\) có 10 chữ số 9 liền sau dấu phẩy

18
13 tháng 11 2018

1. sửa đề : Cmr các số trên là số vô tỉ :

a) Giả sử \(\sqrt{1+\sqrt{2}}=m\) (m là số hữu tỉ) thì :

\(\Leftrightarrow1+\sqrt{2}=m\)

\(\Leftrightarrow\sqrt{2}=m-1\)

=> \(\sqrt{2}\) là số hữu tỉ (vô lí)

=> m phải là số vô tỉ

Giả sử \(m+\dfrac{\sqrt{3}}{n}=a\) (a là số hữu tỉ ) thì \(\dfrac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)

=> \(\sqrt{3}\) là số hữu tỉ (vô lí)

=> a phải là số vô tỉ

13 tháng 11 2018

2

a) có thể

b,c) Không thể

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1