Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Đặt \(a+b+c=t\) ta có \(a+b+c\le3\)
Đặt \(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow2P\ge\frac{18}{a+b+c}+3\left(a+b+c\right)=\frac{18}{t}+3t\)
ĐẾn đây nhóm thế nào hả ad
Do \(a;b;c>0\) và \(a^2+b^2+c^2=3\)
\(\Rightarrow0< a;b;c< \sqrt{3}\)
Ta cần CM: \(\frac{1}{a}+\frac{3}{2}a\ge\frac{a^2+9}{4}\)
Hay \(\frac{\left(a-1\right)^2\left(4-a\right)}{4a}\ge0\) Dúng do \(0>a< \sqrt{3}\)
Tương tự cộng lại ta được BđT cần cm
Áp dụng bất đẳng thức bu nhi a ta có
\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)=3.\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
=> \(a+2b\le3c\)
Mà \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
=> \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)
Đặt P=\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+5\left(a^2+b^2+c^2\right)\)
\(=\left(5a^2+\frac{4}{a}\right)+\left(5b^2+\frac{4}{b}\right)+\left(5c^2+\frac{4}{c}\right)\)
Lại có:\(a^3+b^3+c^3=3\)và \(a,b,c>0\)\(\Rightarrow0< a,b,c\le\sqrt[3]{3}\)
Ta chứng minh cho:
\(5x^2+\frac{4}{x}\ge2x^3+7\)với \(0< x\le\sqrt[3]{3}\)
\(\Leftrightarrow5x^2+\frac{4}{x}-2x^3-7\ge0\)
\(\Leftrightarrow5x^3+4-2x^4-7x\ge0\)
\(\Leftrightarrow2x^4-5x^3+7x-4\le0\)
\(\Leftrightarrow\left(2x^2-x-4\right)\left(x-1\right)^2\le0\)
Nhận thấy \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\2x^2-x-4< 0\forall0< x\le\sqrt[3]{3}\end{cases}}\)\(\Rightarrow5x^2+\frac{4}{x}\ge2x^3+7\)\(\left(1\right)\)
Áp dụng (1).Ta có:
\(P\ge2a^3+7+2b^3+7+2c^3+7\) với \(0< a,b,c\le\sqrt[3]{3}\)
\(\Leftrightarrow P\ge2\left(a^2+b^2+c^2\right)+21\)
\(\Leftrightarrow P\ge27\) Do:\(a^3+b^3+c^3=3\)\(\left(đpcm\right)\)
Dấu = xảy ra khi:
\(a=b=c=1\)
a+bc/b+c + b+ca/c+a + c+ab/a+b
ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a
tương tự với các phân số còn lại:
ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c
đặt 1-a=x, 1-b=y, 1-c=z =>
yz/x + xz/y + xy/z
áp dụng bđt cô-sin =>
yz/x + xz/y >= 2 căn yz/x . xz/y=2z
tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y
=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4
=> H>= 2
=> bt trên >= 2
a+bc/b+c + b+ca/c+a + c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
bạn có:
1/a^3(b+c) + 1/b^3(a+c) + 1/c^3(a+b) = (b^2.c^2)/(a^3.b^2.c^2.(b+c)) + (a^2.c^2)/(a^2.b^3.c^2(a+c)) + a^2.b^2/(a^2.b^2.c^3.(a+b)) (nhân cả tử với mẫu cho a , b , c tương ứng)
vì abc = 1 nên bạn sẽ có:
(b^2.c^2)/(a(b+c)) + a^2.c^2/(b(a+c)) + a^2.b^2/(c(a+b))
áp dụng bất đẳng thức Cauchy-schwarz( bất đẳng thức này bạn dễ dàng chứng minh được dựa vào bunhiacopsky, bạn cũng có thể lên mạng tìm hiểu :D)
(b^2.c^2)/(a(b+c)) + a^2.c^2/(b(a+c)) + a^2.b^2/(c(a+b)) >= (ac + ab + bc)^2/( a(b+c) + b(a+C) + c(a+b))
vế phải = (ac + ab + bc)^2/(2(ab + ac + bc) = (ac + ab + bc)/2 >= (3 căn bậc ba( a^2.b^2.c^2))/2 (bđt cauchy) >= 3.1/2 = 3/2 (vì abc = 1) => đpcm
Cho 4 số dương a, b, c, d thỏa mãn điều kiện a+c=2b và c(b+d)=2bd. CM :
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\)
\(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" <=> \(a=b=c=1\)
\(Áp dụng BĐT AM-GM ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\) \(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế: \(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\) \(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\) Dấu "=" <=> \(a=b=c=1\)\)