\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Đề bài là tìm MaxB 

Ta có \(a^2+b^2\ge2ab;b^2+1\ge2b\)

=> \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

=> \(B\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)=\frac{1}{2}\)

Do \(abc=1\)=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=1\)

MaxB=1/2  khi x=y=z=1

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

10 tháng 3 2017

Mình sẽ giải theo pp tập thể dục nha : 

Theo bài ra , ta có : 

\(a^2+b^2+c^2=3\)

\(\Leftrightarrow a^2+b^2+c^2-3=0\)

\(\Leftrightarrow a^2-1+b^2-1+c^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)\left(a+1\right)=0\\\left(b-1\right)\left(b+1\right)=0\\\left(c-1\right)\left(c+1\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\c=-1\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=1;a=-1\\b=1;b=-1\\c=1;c=-1\end{cases}}\)

mà a,b,c là ba số không âm 

=) a = b = c =1 

Thay a = b = c = 1 vào biểu thức ở đầu bài , ta được 

\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)

\(=\frac{1}{1+2+3}+\frac{1}{1+2+3}+\frac{1}{1+2+3}\)

\(=\frac{1}{6}\times3=\frac{1}{2}\)

Cái phần bé hơn hình như là có cái j đó sai sai vì gt đầu bài là ba số ko âm mà nên làm sao mà bé hơn được 

20 tháng 2 2021

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

NV
24 tháng 9 2019

Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(\left(81-108a\right)\left(2a-a^2\right)\le25\)

\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)

\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))

Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)

Cộng vế với vế:

\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)

\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)