Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)
\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)
\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)
Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)
\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)
\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)
\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)
Giờ ta cần chứng minh
\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy ta có ĐPCM
alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)
Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)
Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)
\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)
Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)
\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)
\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)
Như vậy (*) đúng
Đẳng thức xảy ra khi a = b = c
\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)
Thật vậy, theo AM-GM ta có:
\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)
\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Ta có:\(\sqrt{4a+3b+2}\le\frac{9+4a+3b+2}{6}=\frac{4a+3b+11}{6}\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge6.\sum\frac{a^2}{4a+3b+11}\)
Lại có:\(6.\sum\frac{a^2}{4a+3b+11}\ge6.\frac{\left(a+b+c\right)^2}{7\left(a+b+c\right)+33}=\frac{54}{54}=1\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge1\)
"="<=>x=y=z=1
\(VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{4a+3b+2}+\sqrt{4b+3c+2}+\sqrt{4c+3a+2}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{\left(1+1+1\right)\left(4a+3b+2+4b+3c+2+4c+3a+2\right)}}\)
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{3\left(7\left(a+b+c\right)+6\right)}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài này dễ bạn à
áp dụng bđt Cô-si cho 3 số ta được
\(\sqrt[3]{\left(a+3b\right).1.1}\le\frac{a+3b+1+1}{3}\)
Tương tự bạn sẽ có VT\(\le\) \(\frac{a+3b+1+1+b+3c+1+1+c+3a+1+1}{3}\)\(=\frac{4\left(a+b+c\right)+6}{3}\)
Do \(a+b+c=\frac{3}{4}\)\(\Rightarrow VT\le\frac{4.\frac{3}{4}+6}{3}=3\)
dấu "=" khi a=b=c=\(\frac{1}{4}\)