\(a+b+c=1\) . Chứng minh rằng \(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Ta có :

\(\sqrt{a +b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

<=> \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\)

<=> \(2\left(a+b+c\right)+2\sqrt{a+b}\sqrt{b+c}+2\sqrt{c+a}\sqrt{b+c}+2\sqrt{b+c}\sqrt{c+a}\le6\)

<=> \(\sqrt{a+b}\sqrt{b+c}+\sqrt{c+a}\sqrt{b+c}+\sqrt{b+c}\sqrt{c+a}\le2\)   (a)

Đặt \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\Rightarrow x+y+z=2\left(a+b+c\right)=2\)

Suy ra 

(a) <=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le2\)

Ta có bất đẳng thức phụ sau : Với x,y,z là các số dương thì

\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)  (*)

Chứng minh : Nhân 2 cho 2 vế 

(*) <=> \(2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\le2x+2y+2z\)

<=>  \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Vậy \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

Suy ra \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z=2\)

Vậy Với a + b + c = 1 thì \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Đẳng thức xảy ra <=> x = b = c = \(\frac{1}{3}\)

9 tháng 10 2016

ko biết

3 tháng 2 2019

Ta có: \(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{abc}{abc+a^2\left(a+b+c\right)}}=\sqrt{\frac{bc}{ac+a^2+ab+ac}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si được

\(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Thiết lập các bđt còn lại cho 2 số hạng còn lại rồi cộng vào được đpcm

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

25 tháng 8 2020

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)

28 tháng 7 2017

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

Áp dụng bđt Bunhiacopski ta có

\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)

30 tháng 10 2019

Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.