\(\frac{a+b-c}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1.Ta có\(\frac{a+b-c}{c}\)=1=>a+b-c=c

                                                                                                                                           =>a+b=2c

                                                                                                                           \(\frac{b+c-a}{a}\)=1=>b+c-a=a

                                                                                                                                              =>b+c=2a

                                                                                                                           \(\frac{c+a-b}{b}\)=1=>c+a-b=b

                                                                                                                                              =>c+a=2b

B=(1+\(\frac{b}{a}\))+(1+\(\frac{a}{c}\))+(1+\(\frac{c}{b}\))=(Quy đồng lên cộng như bình thường nha)\(\frac{a+b}{a}\).\(\frac{c+a}{c}\).\(\frac{b+c}{b}\)

(Thay từ cái trên kia kìa bạn ạ vào biểu thức thì ta có)                           =\(\frac{2a.2b.2c}{abc}\)

                                                                                                                      =\(\frac{8\left(abc\right)}{abc}\)

                                                                                                                      =8

 

24 tháng 7 2015

bạn ơi hình như bạn chép sai đề phải là B= \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)mới đúng chứ bạn 

28 tháng 3 2019

TH1: Nếu a+b+c \(\ne0\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)

Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)

TH2 : Nếu a+b+c = 0

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

        \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)

vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

TH1: a+b+c=0 

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)

TH2: a+b+c khác 0

 \(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)

6 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)

Thay vào biểu thức A ta có :

\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

Vậy..........

 Ta có: \(\frac{a}{x}+\frac{y}{b}=1\)

\(\rightarrow\frac{a}{x}\cdot\frac{b}{y}+\frac{y}{b}\cdot\frac{b}{y}=1\cdot\frac{b}{y}\)

\(\rightarrow\frac{ab}{xy}+1=\frac{b}{y}\left(1\right)\)

Ta có: \(\frac{b}{y}+\frac{z}{c}=1\)

\(\rightarrow\frac{b}{y}=1-\frac{z}{c}\left(2\right)\)

Từ (1) và (2) \(\rightarrow\frac{ab}{xy}+1=1-\frac{z}{c}\)

\(\rightarrow\frac{ab}{xy}=\frac{-z}{c}\)          \(\rightarrow abc=-xyz\)

\(\rightarrow abc+xyz=0\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)

Xét \(d=\pm1\)=> vô lí

Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2

=> M=ab+cd=4+4=8

18 tháng 3 2017

\(\frac{2a-b}{a+b}=\frac{2}{3}\)

\(\Leftrightarrow6a-3b=2a+2b\)

\(\Leftrightarrow6a-2a=2b+3b\)

\(\Leftrightarrow4a=5b\)

\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)

\(\Leftrightarrow4a-2b=3b-3c+3a\)

\(\Leftrightarrow4a-3a=3b-3c+2b\)

\(\Leftrightarrow a=5b-3c\)

\(\Leftrightarrow a=4a-3c\)

\(\Leftrightarrow3a=3c\)

\(\Rightarrow a=c\)

\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)

18 tháng 3 2017

khó quá chịu

18 tháng 8 2016

Theo đầu bài ta có:
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Do \(a+b+c=259\Rightarrow\hept{\begin{cases}a=259-\left(b+c\right)\\b=259-\left(a+c\right)\\c=259-\left(a+b\right)\end{cases}}\)
Từ đó suy ra:
\(\Leftrightarrow Q=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)
\(\Leftrightarrow Q=\left(\frac{259}{b+c}-\frac{b+c}{b+c}\right)+\left(\frac{259}{a+c}-\frac{a+c}{a+c}\right)+\left(\frac{259}{a+b}-\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=\left(259\cdot\frac{1}{b+c}+259\cdot\frac{1}{a+c}+259\cdot\frac{1}{a+b}\right)-\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=259\cdot\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-\left(1+1+1\right)\)
Do \(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}=15\) nên:
\(\Leftrightarrow Q=259\cdot15-3\)
\(\Leftrightarrow Q=3882\)

18 tháng 8 2016

a=259-(b+c)
b=259-(c+a)
c=259-(a+b)
Thay vào Q
Q=259-(a+b)/a+b+259-(b+c)/b+c+259-(c+a)/c+a
Q=259/a+b+259/b+c+259/c+a-3
Q=259.(1/a+b+1/c+a+1/b)+c-3
Q=259x15-3
Q=3882