Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do abc=1 nên đặt a=x/y;b=y/z;c=z/x
\(P=\sum\sqrt[4]{\dfrac{a+b}{c+1}}=\sum\sqrt[4]{\dfrac{\dfrac{x}{y}+\dfrac{y}{z}}{\dfrac{z}{x}+1}}=\sum\sqrt[4]{\dfrac{x\left(xz+y^2\right)}{yz\left(x+z\right)}}\)
ta có\(\dfrac{x\left(x+z\right)\left(xz+y^2\right)}{yz\left(x+z\right)^2}=\dfrac{x\left(x\left(z^2+y^2\right)+z\left(x^2+y^2\right)\right)}{yz\left(x+z\right)^2}\)
\(\ge\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{yz\left(x+z\right)^2}\)(cô si 2 số)
P>=\(\sum\sqrt[4]{\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{\left(x+z\right)^2yz}}\)>=3(cô si 3 số)
bài này chỉ ở dạng trung trung thôi, có 2 cái link 1 tổng quát 2 hiệu quát ko biết giúp j dc ko
-tổng quát: Học tại nhà - Toán - Toán hay hay
-hiệu quát: Học tại nhà - Toán - (Bài Toán Thách Thức )
BĐT dạng k hay n là t ngu lắm ko giúp dc :v
a/ Th1: Nếu x<\(\dfrac{-1}{2}\) ta có
1-x-2x-1=-3x
<=> 0=0
Th2: Nếu \(\dfrac{-1}{2}\)\(\le\)x<0 ta có
1-x+2x+1=-3x
<=> x=\(\dfrac{-1}{2}\)(t/m)
Th3 Nếu 0\(\le\)x<1 ta có
1-x+2x+1=3x
<=> x=1(kt/m)
Th4: Nếu x\(\ge\)1 ta có
x-1+2x+1=3x
<=> 0=0
Vậy..................
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
#Đêm qua tự nhiên mơ thấy cách này, dậy làm luôn :v
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(x^2+y^2+1\right)\left(1+1+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{1}{x^2+y^2+1}\le\dfrac{2+z^2}{\left(x+y+z\right)^2}.\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{y^2+z^2+1}\le\dfrac{2+x^2}{\left(x+y+z\right)^2};\dfrac{1}{x^2+z^2+1}\le\dfrac{2+y^2}{\left(x+y+z\right)^2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{x^2+y^2+z^2+6}{\left(x+y+z\right)^2}=\dfrac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{\left(x+y+z\right)}=1\)
Khi \(x=y=z=1\)
bài này dễ thôi bạn, quan trọng là nó hơi dài nên mình không có hứng làm chi tiết
BĐT đã cho viết lại thành
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)^2+72abc\left(ab+bc+ca\right)-\left(a+b+c\right)^5\le0\)
\(\Leftrightarrow-\dfrac{3}{2}\left(8a^3+7a^2b+7a^2c-7ab^2-7ac^2+9b^2c+9bc^2\right)\left(b-c\right)^2-\dfrac{3}{2}\left(8b^3+7b^2c-7bc^2+9ac^2+7ab^2+9a^2c-7a^2b\right)\left(c-a\right)^2-\dfrac{3}{2}\left(9a^2b+9ab^2+7ac^2-7a^2c-7b^2c+7bc^2+8c^3\right)\left(a-b\right)^2\le0\)
@Akai Haruma @Unruly Kid @Lightning Farron @Nguyễn Quang Định