Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Đặt \(\left ( \sqrt{\frac{a}{b+c}},\sqrt{\frac{b}{a+c}},\sqrt{\frac{c}{a+b}} \right )=(x,y,z)\)
\(\Rightarrow \left\{\begin{matrix} x^2=\frac{a}{b+c}\\ y^2=\frac{b}{a+c}\\ z^2=\frac{c}{a+b}\end{matrix}\right.\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=2\)
\(\Leftrightarrow (1-\frac{1}{x^2+1})+(1-\frac{1}{y^2+1})+(1-\frac{1}{z^2+1})=1\)
\(\Leftrightarrow \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}=1\)
BĐT cần chứng minh tương đương:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 2(x+y+z)(\star)\)
Áp dụng BĐT Bunhiacopxky:
\(\left ( \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1} \right )(x^2+1+y^2+1+z^2+1)\geq (x+y+z)^2\)
\(\Leftrightarrow x^2+1+y^2+1+z^2+1\geq (x+y+z)^2\)
\(\Leftrightarrow xy+yz+xz\leq \frac{3}{2}\)
Kết hợp với hệ quả của BĐT AM-GM :
\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)
\(\Rightarrow xy+yz+xz\geq \frac{3xyz(x+y+z)}{xy+yz+xz}\geq \frac{3xyz(x+y+z)}{\frac{3}2{}}=2xyz(x+y+z)\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{2xyz(x+y+z)}{xyz}=2(x+y+z)\)
Do đó BĐT \((\star)\) được chứng minh.
Bài toán hoàn thành. Dấu bằng xảy ra khi \(a=b=c\)
a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)
\(\Leftrightarrow2n+1=1\left(2n+1\right)\)
\(\Leftrightarrow2n+1=2n+1\)
\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Câu b) ý 2:
Áp dụng BĐT cô si ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)
_ Chứng minh VT <2 .
Với a,b,c > 0, ta có:
\(a< a+b\Rightarrow\dfrac{a}{a+b}< 1=\dfrac{c}{c}\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)
\(b< b+c\Rightarrow\dfrac{b}{b+c}< 1=\dfrac{a}{a}\Rightarrow\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\) (2)
\(c< c+a\Rightarrow\dfrac{c}{c+a}< 1=\dfrac{b}{b}\Rightarrow\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)
Từ (1) , (2) và (3), Cộng vế theo vế ta có:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\)(*)
_Chứng minh VP > 2.
Theo BĐT Cô-si, ta có:
\(\sqrt{\dfrac{b+c}{a}.1}\le\left(\dfrac{b+c}{a}+1\right):2=\dfrac{b+c+a}{2a}\)
Do vậy : \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Tương tự:\(\sqrt{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c},\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng vế theo vế
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu ''='' xảy ra \(\left\{{}\begin{matrix}a=b+c\\b=a+c\\c=a+b\end{matrix}\right.\)
\(\Rightarrow a+b+c=0\) (trái với g/t a,b,c >0)
Vậy đẳng thức khong xảy ra dấu ''=''
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\) (**)
Từ (*) và (**) \(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)
Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2.
Áp dụng bất đẳng thức Cô si cho 3 số dương ta có
x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+13≥33x3.x3.13 hay 2x^3+1\ge3x^22x3+1≥3x2.
Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+1≥3y2;2z3+1≥3z2. Cộng theo vế các bất đẳng thức nhận được ta có 2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+3≥2(x2+y2+z2)+(x2+y2+z2)
=2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2
\ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}≥2(x2+y2+z2)+331
Do đó x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi
x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1⇔a=b=c>0.
\(VT=\sum\dfrac{a}{a+b}< \sum\dfrac{a+c}{a+b+c}=2\)
\(VP=\sum\sqrt{\dfrac{a}{b+c}}=\sum\dfrac{a}{\sqrt{a}\cdot\sqrt{b+c}}>\sum\dfrac{2a}{a+b+c}=2\)
\(VP>2>VT\)