Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAC vuông tại A và ΔBAD vuông tại A có
BA chung
AC=AD
=>ΔBAC=ΔBAD
=>góc CBA=góc DBA
=>BA là phân giác của góc DBC
A B C D M 1 2 3 4
A) XÉT \(\Delta BDA\)VÀ\(\Delta BCA\)CÓ
\(DA=CA\left(GT\right)\)
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AB LÀ CẠNH CHUNG
\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)
=>\(\widehat{B_1}=\widehat{B_2}\)
=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)
B)
TA CÓ
\(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)
\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)
MÀ \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)
XÉT \(\Delta MBD\)VÀ\(\Delta MBC\)CÓ
MB LÀ CẠNH CHUNG
\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)
\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)
=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)
GT:cho tam giác vuông ABC ( A vuông)
AC=AD ; DAC thẳng hàng;D khác C
KL: BA là tia phân giác của góc ABD
tam giác MBC=MBD
a), xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh cung
nên tam giác ABC = tam giác ADC (c-g-c)
mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà ba nằm giữa
=> ba là tia phân giác của góc CBD
b), xét tam giác MBCvàMBD có
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
a) Xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh chung
=> tam giác ABC = tam giác ADC (c-g-c)
Mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà BA nằm giữa
=> BA là tia phân giác của góc CBD
b), xét tam giác MBC và MBD ,có :
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
hình, giả thiết, kết luận tự vẽ, viết đi
Xét △ABC vuông tại A và △ABD vuông tại A
Có: AC = AD (gt)
AB là cạnh chung
=> △ABC = △ABD (cgv)
=> ABC = ABD (2 góc tương ứng)
Và BA nằm giữa CBD
=> BA là phân giác của CBD
b, Vì △ABC = △ABD (cmt)
=> BC = BD (2 cạnh tương ứng)
Ta có: CBA + CBM = 180o (2 góc kề bù)
DBA + DBM = 180o (2 góc kề bù)
Mà ABC = ABD (cmt)
=> CBM = DBM
Xét △CBM và △DBM
Có: BC = BD (cmt)
CBM = DBM (cmt)
BM là cạnh chung
=> △CBM = △DBM (c.g.c)
Bài 55:
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}=90^0\)
=>DE\(\perp\)BC tại E
Ta có: \(\widehat{EDC}+\widehat{C}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{C}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
b: ta có: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có:BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE
Bài 56:
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>AC//BE và AC=BE
b: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)(hai góc so le trong, AC//BE)
MA=ME
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>K,M,I thẳng hàng
a: Xét ΔBAC vuông tại A và ΔBAD vuông tại A có
BA chung
AC=AD
Do đó: ΔBAC=ΔBAD
Suy ra: \(\widehat{CBA}=\widehat{DBA}\)
hay BA là tia phân giác của góc CBD