\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Bạn ra bài muộn thế mọi người ngủ cả rồi ai giúp nữa

12 tháng 10 2015

Ta có:

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\)

\(2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}<1\left(đpcm\right)\)

13 tháng 10 2015

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{99}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

=> \(A=1-\frac{1}{2^{99}}<1\)

=> \(A<1\)(Đpcm)

10 tháng 10 2015

\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)

=>B=\(1-\frac{1}{2^{98}}\Rightarrow B<1\)

16 tháng 8 2018

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

\(B=1-\frac{1}{2^{99}}< 1\left(đpcm\right)\)

16 tháng 8 2018

cảm ơn

8 tháng 9 2015

B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

B = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

2B - B = \(1-\frac{1}{2^{99}}\)

=> B = \(1-\frac{1}{2^{99}}<1\) 

=> B < 1 (đpcm)

25 tháng 8 2016

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(A=\frac{1}{2}+\frac{1^2}{2^2}+...+\frac{1^{2014}}{2^{2014}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

\(A=1-\frac{1}{2^{2014}}< 1\)

Đpcm

1 tháng 1 2016

cc giải ra xem nào