Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
\(Sin^6a+cos^6a+3\left(sin^2a+cos^2a\right)\)
\(=\left(sin^2a+cos^2a\right)^3\)
\(=1\)
\(\)
\(A=\sin^6x+\cos^6x+3.1.\sin^2x.\cos^2x=\)\(\sin^6x+\cos^6x+3.\left(sin^2x+\cos^2x\right).\sin^2x.\cos^2x=\left(\sin^2x+\cos^2x\right)^3=1^3=1\)
\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)
\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha-cos^2\alpha\)
\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)
\(1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha=3sin^2\alpha\left(1-cos^2\alpha\right)+\left(1-cos^2\alpha\right)\)
\(=\left(3sin^2\alpha+1\right).sin^2\alpha=0\)
a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a
b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1
ÁP dụng HĐT: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(A=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x-cos^2x\)
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin^2x-cos^2x\)
\(=1-3sin^2x.cos^2x+3sin^2x-cos^2x\)
\(=3sin^2x\left(1-cos^2x\right)+1-cos^2x\)
\(=3sin^2x.sin^2x+sin^2x\)
\(=3sin^4x+sin^2x\)