Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT tương đương
\(a^2+b^2+\frac{a^2b^2+2ab+1}{\left(a+b\right)^2}\ge2\)
<=>\(\left(a+b\right)^2-2+\frac{1}{\left(a+b\right)^2}+\frac{a^2b^2}{\left(a+b\right)^2}+\frac{2ab}{\left(a+b\right)^2}-2ab\ge0\)
<=>\(\left(a+b\right)^2-2.\left(a+b\right).\frac{1}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(ab-\frac{ab}{\left(a+b\right)^2}\right)\ge0\)
<=>\(\left(a+b-\frac{1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left(a+b\right)^2-ab}{\left(a+b\right)^2}\right)\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left[\left(a+b\right)^2-1\right]}{\left(a+b\right)\left(a+b\right)}\right)\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\frac{\left(a+b\right)^2-1}{a+b}.\frac{ab}{a+b}\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}-\frac{ab}{a+b}\right)^2\ge0\left(\text{luôn đúng}\right)\)
=> dpcm
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Đặt A =\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)
Vì a + b \(\ne\)0 nên A luôn được xác định.
Giả sử \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)^2}+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-\frac{2\left(a+b\right)^2}{\left(a+b\right)^2}\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)(vì a + b \(\ne\)0)
\(\Leftrightarrow[\left(a^2+2ab+b^2\right)-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow[\left(a+b\right)^2-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-\left[2ab\left(a+b\right)^2+2\left(a+b\right)^2\right]+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2\right]^2-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)
\(\left[\left(a+b\right)^2-\left(ab+1\right)^2\right]^2\ge0\)(luôn đúng)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a+b\ne0\\\Leftrightarrow a=b\end{cases}}\Leftrightarrow a=b\left(a,b\ne0\right)\)
Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge\)2 với a, b là các số thỏa mãn a+b \(\ne\)0
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b\ne0\end{cases}\Leftrightarrow a=b}\)(a,b \(\ne\)0)
Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\) với a, b là các số thỏa mãn \(a+b\ne0\)
Do \(c^2+2\left(ab-ac-bc\right)=0\Leftrightarrow-c^2=2\left(ab-ac-bc\right)\)
Ta có; \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+c^2-c^2+\left(a-c\right)^2}{b^2+c^2-c^2+\left(b-c\right)^2}=\frac{a^2+c^2+2\left(ab-ac-bc\right)+\left(a-c\right)^2}{b^2+c^2+2\left(ab-ac-bc\right)+\left(b-c\right)^2}\)
\(=\frac{2\left(a-c\right)^2+2\left(ab-bc\right)}{2\left(b-c\right)^2+2\left(ab-ac\right)}=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}\)
\(=\frac{a-c}{b-c}\) (đpcm)
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)
Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng)
\(\Leftrightarrow dpcm\)
⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2
⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0
⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0
⇔[(a+b)2−ab−1]2≥0(đúng)
k mình đi
ta chứng minh đưk a2+b2 >= 2ab.
ta chứng minh đưk a2+b2 >= 2ab. Ta có:
a2+b2 + (ab+1/a+b)2 = (a+b)2 + (ab+1/a+b)2 - 2ab >= 2(ab+1) - 2ab = 2ab + 2 - 2ab = 2
Vậy.......