\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\) .

P/S: Gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Có: a>1, b>1

=> a - 1> 0; b -1 >0

Áp dụng bđt Cauchy Schwarz dạng Engel có:

\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge\dfrac{\left(a+b\right)^2}{\left(b-1+a-1\right)}=\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\)

Ta cần cm: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)

Có: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b\right)-16\)

\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+16\ge0\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) (luôn đúng)

=> Đpcm

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=4\end{matrix}\right.\)=> a = b = 2

4 tháng 7 2018

Nay t rảnh nè :D

\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)

\(\Leftrightarrow\dfrac{a^2}{b-1}-4+\dfrac{b^2}{a-1}-4\ge0\)

\(\Leftrightarrow\dfrac{a^2-4b+4}{b-1}+\dfrac{b^2-4a+4}{a-1}\ge0\)

\(a-1;b-1>0\Leftrightarrow a^2-4b+4+b^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=2\)

p/s: T ủng hộ cách mới,à ko,lm cách mới phá m cho vui

30 tháng 5 2018

Ta có: \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y+z=6\\x;y;z>0\end{matrix}\right.\)

Làm nốt :v

3 tháng 6 2018

cho em hỏi làm tiếp ntn nữa vậy Nguyễn Huy Thắng Lightning Farron

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{a^2}{b-1}+4(b-1)\geq 2\sqrt{\frac{a^2}{b-1}.4(b-1)}=4a\)

\(\frac{b^2}{a-1}+4(a-1)\geq 2\sqrt{\frac{b^2}{a-1}.4(a-1)}=4b\)

Cộng theo vế:

\(\frac{a^2}{b-1}+\frac{b^2}{a-1}+4(a-1)+4(b-1)\geq 4a+4b\)

\(\Rightarrow \frac{a^2}{b-1}+\frac{b^2}{a-1}\geq 8\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=2$

Ta có : \(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{4}.\dfrac{4}{a+b}=\dfrac{1}{a+b}\) ( đpcm )

Dấu \("="\) xảy ra khi \(a=b\)

1 tháng 1 2019

cái này gọi là cm bđt à?

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1:

Sử dụng biến đổi tương đương. Ta có:

\(a^5+b^5\geq a^3b^2+a^2b^3\)

\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)

\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)

Ta có đpcm.

Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)

Bài 2: Sử dụng kết quả bài 1:

\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)

\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)

Hoàn toàn tt:

\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)

Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)

\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

 

 

11 tháng 5 2018

Em xin cảm ơn!

7 tháng 12 2017

1) Đặt T là vế trái của BĐT

Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:

\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)

Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

7 tháng 12 2017

3)b) Đặt T là vế trái, áp dụng AM-GM ta có:

\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

14 tháng 8 2018

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

16 tháng 3 2018

\(\sqrt{\dfrac{a}{1-a}}+\sqrt{\dfrac{b}{1-b}}+\sqrt{\dfrac{c}{1-c}}>2\)

\(\Leftrightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế ta cũng có:

\(VT\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" ko xảy ra nên ta có ĐPCM

16 tháng 3 2018

bạn có thể giải kỹ hơn phần bđt am-gm ko tại sao lại ra lớn hơn luôn 2a/(a+b+c)

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)