Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y+z=6\\x;y;z>0\end{matrix}\right.\)
Làm nốt :v
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{a^2}{b-1}+4(b-1)\geq 2\sqrt{\frac{a^2}{b-1}.4(b-1)}=4a\)
\(\frac{b^2}{a-1}+4(a-1)\geq 2\sqrt{\frac{b^2}{a-1}.4(a-1)}=4b\)
Cộng theo vế:
\(\frac{a^2}{b-1}+\frac{b^2}{a-1}+4(a-1)+4(b-1)\geq 4a+4b\)
\(\Rightarrow \frac{a^2}{b-1}+\frac{b^2}{a-1}\geq 8\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=2$
Ta có : \(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{4}.\dfrac{4}{a+b}=\dfrac{1}{a+b}\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b\)
Bài 1:
Sử dụng biến đổi tương đương. Ta có:
\(a^5+b^5\geq a^3b^2+a^2b^3\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)
\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)
Ta có đpcm.
Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)
Bài 2: Sử dụng kết quả bài 1:
\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)
\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)
Hoàn toàn tt:
\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)
Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)
\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
1) Đặt T là vế trái của BĐT
Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:
\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)
Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
3)b) Đặt T là vế trái, áp dụng AM-GM ta có:
\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
\(\sqrt{\dfrac{a}{1-a}}+\sqrt{\dfrac{b}{1-b}}+\sqrt{\dfrac{c}{1-c}}>2\)
\(\Leftrightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế ta cũng có:
\(VT\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" ko xảy ra nên ta có ĐPCM
bạn có thể giải kỹ hơn phần bđt am-gm ko tại sao lại ra lớn hơn luôn 2a/(a+b+c)
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Có: a>1, b>1
=> a - 1> 0; b -1 >0
Áp dụng bđt Cauchy Schwarz dạng Engel có:
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge\dfrac{\left(a+b\right)^2}{\left(b-1+a-1\right)}=\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\)
Ta cần cm: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)
Có: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b\right)-16\)
\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+16\ge0\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) (luôn đúng)
=> Đpcm
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=4\end{matrix}\right.\)=> a = b = 2
Nay t rảnh nè :D
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)
\(\Leftrightarrow\dfrac{a^2}{b-1}-4+\dfrac{b^2}{a-1}-4\ge0\)
\(\Leftrightarrow\dfrac{a^2-4b+4}{b-1}+\dfrac{b^2-4a+4}{a-1}\ge0\)
\(a-1;b-1>0\Leftrightarrow a^2-4b+4+b^2-4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=2\)
p/s: T ủng hộ cách mới,à ko,lm cách mới phá m cho vui