\(\frac{ab}{c+1}+\frac{bc}{a+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Với x, y là các số thực dương bất kì, theo BĐT Cô-si. Ta có:

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)

\(\Rightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT trên ta có:

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)

Tương tự \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Cộng theo vế ba bất đẳng thức trên ta được:

\(VT\left(1\right)\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+cb}{c+a}+\frac{cb+ca}{a+b}\right)=\frac{a+b+c}{4}=\frac{1}{4}\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

P/s: Bạn nói đúng, lớp 6 giải được rồi! Như mình nè , có điều không chắc thôi! =)))

5 tháng 8 2016

 \(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 Ta đc:

\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1

\(=\frac{c+ac+1}{c+ac+1}=1\)

tick cho mk vs nhé

1 tháng 6 2015

a #  b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0

<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0

<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0

<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0               (*)

Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c

Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0

(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0

<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0

<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0        (**)

Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0

=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)

Vay c < 0 (noi chung la trong a,b,c phai co so am )

Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c

(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0

<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0

<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0             (***)

a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)

Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0

=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0  mâu thuẫn với  (***)

Chứng tỏ trong a,b,c phải có số dương 

Tóm lại trong 3 số a,b,c phải có  số dương và âm .

21 tháng 3 2018

Quản lý ko duyệt vậy t copy bài của bạn Lê anh tú CTV nhé  

áp dụng dãy tỉ số = nhau ta được

\(\Leftrightarrow\frac{\left(ab+ac\right)+\left(bc+ba\right)-\left(ca+cb\right)}{2+3-4}=\frac{\left(ab+ab\right)+\left(bc-bc\right)+\left(ac-ac\right)}{1}=\frac{2ab}{1}\)

tương tự 

\(\frac{\left(ab+ac\right)+\left(ca+cb\right)-\left(bc+ba\right)}{2+4-3}=\frac{\left(ab-ab\right)+\left(ac+ac\right)+\left(cb-cb\right)}{3}=\frac{2ac}{3}\)

tương tự

\(\frac{\left(bc+ba\right)+\left(ca+cb\right)-\left(ab+ac\right)}{3+4-2}=\frac{\left(cb+cb\right)+\left(ba-ba\right)+\left(ca-ca\right)}{5}=\frac{2cb}{5}\)

từ 1,2,3 ta sy ra

\(\frac{2ab}{1}=\frac{2ac}{3}=\frac{2cb}{5}\)

\(\frac{2ba}{1}=\frac{2bc}{5}\) " vì 2b=2b" suy ra \(\frac{a}{1}=\frac{c}{5}\)" nhân 3 cho mẫu số của 2 vế ta được \(\frac{a}{3}=\frac{c}{15}\) " 1"

tương tự với   \(\frac{2ca}{3}=\frac{2cb}{5}\) " vì 2c=2c suy ra  \(\frac{a}{3}=\frac{b}{5}\) "2"

từ 1 và 2 suy ra \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)

21 tháng 3 2018

Em muốn giúp anh lắm nhưng em ko bít làm !

Ta có: 

M=1/a^2+1/b^2+1/c^2 = (a^2b^2 + b^2c^2 + c^2a^2)/a^2b^2c^2 

Bình phương 2 vế a+b+c=0 
=> a^2+b^2+c^2 = -2(ab+bc+ca) 
=> (a^2 +b^2 +c^2)^2 =4 [a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)] 
=> (a^2 +b^2 +c^2)^2/4 = a^2b^2 + b^2c^2 + c^2a^2 

=> M = [(a^2 +b^2 +c^2)/2abc]^2 

Vì a,b,c là các số hữu tỷ 
=> M là bình phương của số hữu tỷ

20 tháng 11 2018

\(M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2-2b^2ac-2c^2ab-2a^2bc}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)^2}{a^2b^2c^2}=\left(\frac{ab+bc+ca}{abc}\right)^2\) là bình phương 1 số hửu tỉ.