Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a, b, c là các số thực thỏa mãn \(a^2+b^2+c^2=1\)
chứng minh rằng abc+2(1+a+b+c+ab+ac+bc)\(\ge\)0
có lẽ xài viete.
a+b+c=abc <=> b+c=abc-a=a.(2a2-1)=2a3-a
mà bc=2a2=> b,c là nghiệm của phương trình \(x^2-\left(2a^3-a\right)x+2a^2=0\)
để phương trình có nghiệm thì \(\Delta=\left(2a^3-a\right)^2-8a^2\ge0\Leftrightarrow a^2\left[\left(2a^2-1\right)^2-8\right]\ge0\)
\(\Leftrightarrow2a^2-1\ge2\sqrt{2}\Leftrightarrow a^2\ge\frac{1+2\sqrt{2}}{2}\Leftrightarrow a\ge\sqrt{\frac{1+2\sqrt{2}}{2}}\)(đpcm)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Xét 2 trường hợp :
+) TH : \(\frac{a^2+16bc}{b^2+c^2}\ge\frac{a^2}{b^2}\)
Dễ thấy \(\frac{b^2+16ac}{c^2+a^2}\ge\frac{b^2}{a^2}\); \(\frac{c^2+16ab}{a^2+b^2}\ge\frac{16ab}{a^2+b^2}\)
Cần chứng minh : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{16ab}{a^2+b^2}\ge10\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)+\frac{16}{\frac{a^2+b^2}{ab}}\ge12\)\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+\frac{16}{\frac{a}{b}+\frac{b}{a}}\ge12\)
Đặt \(\frac{a}{b}+\frac{b}{a}=t\)( t \(\ge\)2 )
BĐT trở thành : \(t^2+\frac{16}{t}\ge12\Leftrightarrow t^2+\frac{8}{t}+\frac{8}{t}\ge12\)
Ta có : \(t^2+\frac{8}{t}+\frac{8}{t}\ge3\sqrt[3]{t^2.\frac{8}{t}.\frac{8}{t}}=12\)
+) TH \(\frac{a^2+16bc}{b^2+c^2}< \frac{a^2}{b^2}\Leftrightarrow b^2\left(a^2+16bc\right)< a^2\left(b^2+c^2\right)\)
\(\Leftrightarrow16b^3c< a^2c^2\Leftrightarrow16b^3< a^2c\)
Do \(b\ge c\)nên \(16b^3< a^2c\le a^2b\Rightarrow a^2>16b^2\)
\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}=16+\frac{\left(a^2-16b^2\right)+16c\left(b-c\right)}{b^2+c^2}>16\)
\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}+\frac{b^2+16ac}{c^2+a^2}+\frac{c^2+16ab}{a^2+b^2}>\frac{a^2+16bc}{b^2+c^2}>16>10\)
Bài toán được chứng minh . Dấu "=" xảy ra khi a = b , c = 0 và các hoán vị
P/s : bài này ở trong sách gì mà mk quên rồi
Mình thấy trong sách "Bất đẳng thức cực trị 8 9" của Võ Quốc Bá Cẩn đấy
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)
Kết hợp với bđt Cô-si cho 2 số dương ta đc
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)
\(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)
\(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)
\(=a^2+b^2+c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)
Áp dụng bđt Cô-si cho 2 số dương
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
Cộng từng vế của 6 bđt trên lại ta đc
\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)
\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)
\(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)
Mà a,b,c là các số dương nên a = b = c = 1
Vậy ............
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
ta có :
\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)
tương tự rồi cộng theo vế :
\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)
áp dụng bđt cô si
\(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)
tương tự rồi cộng theo vế
\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)
\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)
đến đây chịu :)))))