\(A=\dfrac{\sqrt{ab}}{a+b+2c}+\dfrac{\sqrt{bc}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

\(\dfrac{\sqrt{ab}}{a+c+b+c}\le\dfrac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{\sqrt{ab}}{(a+c)+(b+c)}+\frac{\sqrt{bc}}{(b+a)+(c+a)}+\frac{\sqrt{ca}}{(c+b)+(a+b)}\)

\(\leq \underbrace{\frac{\sqrt{ab}}{2\sqrt{(a+c)(b+c)}}+\frac{\sqrt{bc}}{2\sqrt{(b+a)(c+a)}}+\frac{\sqrt{ca}}{2\sqrt{(c+b)(a+b)}}}_{M}(*)\)

Xét:

\(M=\frac{1}{2}\frac{\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}(1)\)

Theo BĐT Bunhiacopxky và AM-GM:

\((\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)})^2\leq (ab+bc+ac)(a+b+b+c+c+a)\)

\(=2(ab+bc+ac)(a+b+c)=2[(a+b)(b+c)(c+a)+abc]\)

\(\leq 2[(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}]=\frac{9}{4}(a+b)(b+c)(c+a)\)

\(\Rightarrow \sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}\leq \frac{3}{2}\sqrt{(a+b)(b+c)(c+a)}(2)\)

Từ \((1);(2)\Rightarrow M\leq \frac{1}{2}.\frac{3}{2}=\frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow P\leq M\leq \frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c\)

8 tháng 1 2019

em cảm ơn cô

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094

16 tháng 5 2017

Lợi dụng Cauchy-Schwarz' inequality ta có:

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự ta cũng có:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{\sqrt{ca+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{bc+ca}{a+b}+\dfrac{ab+ca}{b+c}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{b+c}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\cdot2=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

20 tháng 5 2017

Ta có P=\(\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\dfrac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\dfrac{ac}{\sqrt{ac+\left(a+b+c\right)b}}\)

=\(\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}+\dfrac{bc}{\sqrt{bc+ac+ab+a^2}}+\dfrac{ac}{\sqrt{ac+ab+bc+b^2}}\)

=\(\dfrac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}+\dfrac{bc}{\sqrt{b\left(a+c\right)+a\left(a+c\right)}}+\dfrac{ac}{\sqrt{c\left(a+b\right)+b\left(a+b\right)}}\)

=\(\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\dfrac{ac}{\sqrt{\left(a+b\right)\left(c+b\right)}}\)

áp dụng bđt Cói ta có:

\(\sqrt{\left(a+c\right)\left(b+c\right)}\)\(\le\)\(\dfrac{2+c}{2}=1+\dfrac{c}{2}\)

\(\sqrt{\left(b+á\right)\left(c+a\right)}\)

11 tháng 11 2018

Theo BĐT \(AM-GM\) ta có :

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tương tự ta có :

\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

Cộng từng vế BĐT :

\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

\("="\Leftrightarrow a=b=c\)

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

1 tháng 5 2018

ad bunhiacopxki ta có

A^2 \(\le3\left(\dfrac{a}{b+c+2a}+\dfrac{b}{c+a+2c}+\dfrac{c}{a+b+2c}\right)\)

Đặt B=\(\dfrac{a}{b+c+2a}+\dfrac{b}{c+a+2b}+\dfrac{c}{a+b+2c}\)

\(\Leftrightarrow\)B-3 =-\(\left(a+b+c\right)\) \(\left(\dfrac{1}{b+c+2a}+\dfrac{1}{c+a+2b}+\dfrac{1}{a+b+2a}\right)\)

dễ CM \(\dfrac{1}{a+b+2c}+\dfrac{1}{b+c+2a}+\dfrac{1}{c+a+2b}\)\(\ge\dfrac{9}{4\left(a+c+b\right)}\)

\(\Rightarrow\)B-3\(\le\)\(\dfrac{-9}{4}\)\(\Rightarrow\)B\(\le\dfrac{3}{4}\)

\(\Rightarrow A^2\le\dfrac{9}{4}\) mà A>0

\(\Rightarrow\)A\(\le\dfrac{3}{2}\)Dấu = xra khi a=b=c

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Đặt biểu thức đã cho là $A$

Ta có:

\(A=\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{a+c+2b}}+\sqrt{\frac{c}{a+b+2c}}\)

\(A=\sqrt{\frac{a}{(a+b)+(a+c)}}+\sqrt{\frac{b}{(b+c)+(b+a)}}+\sqrt{\frac{c}{(c+a)+(c+b)}}\)

Áp dụng BĐT AM-GM:

\(A\leq\sqrt{\frac{a}{2\sqrt{(a+b)(a+c)}}}+\sqrt{\frac{b}{2\sqrt{(b+c)(b+a)}}}+\sqrt{\frac{c}{2\sqrt{(c+a)(c+b)}}}\)

\(\Leftrightarrow A\leq \sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}+\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}+\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}(*)\)

Tiếp tục áp dụng AM-GM:

\(\sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}\leq \frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}\leq \frac{1}{4}\left(\frac{b}{b+c}+\frac{b}{a+b}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}\leq \frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{c+b}+\frac{1}{2}+\frac{1}{2}\right)\)

Cộng theo vế kết hợp với $(*)$

\(\Rightarrow A\leq \frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+6.\frac{1}{2}\right)\)

\(\Leftrightarrow A\leq \frac{1}{4}.6=\frac{3}{2}\)

Vậy \(A_{\max}=\frac{3}{2}\Leftrightarrow a=b=c\)

4 tháng 9 2019

\(a=b=c\rightarrow P=\frac{3}{2}\). Ta se c/m do la gtln của P. Thật vậy:

\(\frac{1}{2}P=\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}+...\)

\(\le\frac{1}{2}\left(\frac{1}{4}+\frac{a}{b+c+2a}+\frac{1}{4}+\frac{b}{c+a+2b}+\frac{1}{4}+\frac{c}{a+b+2c}\right)\)

\(=\frac{1}{2}\left(\frac{3}{4}+\frac{a}{\left(b+a\right)+\left(c+a\right)}+\frac{b}{\left(c+b\right)+\left(b+a\right)}+\frac{c}{\left(c+a\right)+\left(c+b\right)}\right)\)

\(\le\frac{1}{2}\left[\frac{3}{4}+\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)\right]=\frac{3}{4}\)

Do đó \(P\le\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.